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Abstract

Background: Mitogen activated protein kinases (MPKs) are serine/threonine protein kinases that contain
characteristic T-x-Y motif in the activation loop region. MPKs are important signaling molecules involved in diverse
signaling cascades that regulate plant growth, development and stress responses by conducting phosphorylation
events in their target proteins. MPKs phosphorylate their target proteins at either S-P/T-P (Serine/Proline/Threonine)
amino acid. To understand, if MPKs are involved in the auxin signaling cascade, we identified probable target
proteins of MPKs involved in auxin signaling or transport processes.

Results: A genome-wide search of the rice genome database led us to identification of the OsAux/LAX1 gene as a
potential downstream target protein of MPKs. In-silico analysis predicted that MPKs interact with OsAux/LAX1
proteins which were validated by a yeast two-hybrid assay that showed OsMPK3, OsMPK4 and OsMPK6 are
physically interact with OsAux/LAX1 protein.

Conclusion: The yeast two-hybrid interaction showed that MPKs are directly involved in auxin signaling events in
plants. This is the first study to report direct involvement of MPKs in the auxin signaling pathway.
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Background
The plant mitogen activated protein kinases (MPKs) are
evolutionarily conserved serine/threonine protein ki-
nases that contain a characteristic T-x-Y motif in the ac-
tivation loop region and group specific conserved
docking domains in the C-terminal region [1, 2]. MPKs
are involved in highly conserved signal transduction cas-
cade that consists of at least three kinase modules. The
kinase module contains a MP3K (mitogen activated pro-
tein kinase kinase kinase), a MP2K (mitogen activated
protein kinase kinase) and a MPK [2]. In the event of
any environmental or cellular signaling process, plasma
membrane activates MAP3Ks, which conserved serine/
threonine protein kinases that phosphorylate down-
stream amino acids at the S/T-X3–5-S/T motif of MP2K
in the activation loop domain. The MP2Ks then phos-
phorylate the downstream MPKs at the threonine and

tyrosine residue of T-x-Y motif [1]. Once, MPKs are
phosphorylated, they can able to phosphorylate a wide
array of downstream substrate proteins including other
kinases, proteins and transcription factors to regulate
gene expression [1, 3, 4]. The integrity of phosphoryl-
ation events of specific MPK with their substrate pro-
teins is mediated by shared docking domains and
adaptor proteins [1, 5].
The plant MPKs pathway is a major and well devel-

oped pathway involved in growth, development and bi-
otic and abiotic stress responses in plants [2, 6]. This
pathway is very complex and involves crosstalk with sev-
eral other pathways [6–8]; therefore, the present study
was conducted to decipher the complex interaction
mechanism involved in plant MPKs and their involve-
ment in auxin signaling events. Sorensson et al., [9] re-
ported that, MPKs phosphorylates their downstream
target proteins either at S-P-R/S-S-P-R/S-P-K/S-S-P-K
consensus sequences [9]. Therefore, we investigated
whether; OsAux/LAX1 is a suitable interacting partner
of MPK as it contains the S-P motif at position 88.
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Therefore, we planned to conduct interaction analysis of
rice OsMPKs and OsAux/LAX1 protein to confirm their
physical interaction. An in-silico interaction study (dock-
ing interaction) was conducted to determine the details
of the interacting amino acids of OsMPK and OsAux/
LAX1 proteins (docking and protein-protein inter-
action). The results obtained by the in-silico interaction
study were validated by a yeast two hybrid interaction
assay. This is the first study to explain the direct involve-
ment of the MPK pathway in auxin signaling events.

Results and Discussion
Sequence Retrieval, Template Identification, Homology
Modeling and Structural Analysis
The FASTA format amino acid sequences of OsMPK3,
OsMPK4, and OsMPK6 were subjected to BLAST (basic
local alignment search tool) and LOMETS server [10] to
reveal the best templates for comparative modeling of
both the proteins. Homology models were built based
on the structure of the templates (Fig. 1). The homology
models were analyzed for a broad study of the proteins.
The modeled structures were validated by performing
full geometric analysis with Procheck [11]. The struc-
tures were also analyzed with Modeval [12] (Table 1)
which calculates and analyzes the main chain bond
lengths, bond angles, stereochemistry of main and side
chains, Ramachandran plots, and G factors, which in
turn reflects the quality of the prediction. In Procheck, a
low G-factor indicates that the property corresponds to
a low-probability conformation and residues falling in
the disallowed region of Ramachandran plot will have a
low G-factor. It observes the steriochemical distribution
of steriochemical parameters like torsion angles (phi-si
combination, chi1-chi2 combination, chi-1 torsion for
residues that don’t have chi-2, combined chi-3 and chi-4
torsion angles and omega torsion angles) and covalent
geometry (main-chain bond length and main-chain bond
angle). Ramachandran plot is known to be the most reli-
able method of determining the quality of a modeled
protein structure [13, 14]. ProCheck results revealed that
more than 85 % of the residues of the models were
present in the favored region, whereas less than 1 % of
the amino acids were present in the forbidden part of
the Ramachandran plot (Fig. 2, Table 1). ERRAT was
used to identify non-bonded interactions statistics amid
different types of atoms [15] and the overall quality was
found to be more than 80 % (Table 1). As shown in
Table 1, VERIFY3D passed the congeniality of the three
dimensional atomic model with its own amino acid se-
quences [16, 17]. The results of structural super position
revealed a very low root mean square deviation (RMSD)
between target and template structures indicating their
high structural similarity.

Protein-protein Docking Studies
The OsMPK proteins were docked with OsAux/LAX1
using the GRAMM-X docking server [18]. Rigid body
docking was performed and the orientation was checked.
The OsMPK protein was taken as the receptor, whereas
the OsAux/LAX1 protein was considered as ligand
(Fig. 1). The initial orientation of the docked complex
from GRAMM-X was refined using the RosettaDock ser-
ver, which performs a local docking search. The server
requires a desirable starting position to place the protein
interfaces residues in position to interact with each
other. The local perturbation of the RosettaDock server
was ~ ±3Ao in the direction between the receptor and
ligand, ~8Ao for the sliding of the surfaces, ~8o of tilt,
and 360o spin around the axis at the centers of the target
proteins. A total of 1000 simulations were performed
using the server and ten best scoring complexes were
selected for a detailed study based on the lowest en-
ergy. The Yasara server was used to conduct an en-
ergy minimization simulation study [19]. Dimers
obtained from the Rosetta server were further submit-
ted to the Yasara server for energy minimization
using a GROMOS96 force field [19]. The dimer en-
ergy was initially very high. The docked complexes
were minimized to the lowest scores as well and the
lowest minimization energy (Fig. 3).

Protein-protein Interaction Analysis
After conducting the necessary minimization steps, the
protein complexes were submitted to Dimplot to identify
the interaction sites (Fig. 3) [20]. Additionally, the
hydrogen and hydrophobic bonds formed by the
OsMPK-OsAux/LAX1 complexes were analyzed using
Pymol (Fig. 3), while Dimplot was used to analyze the
dimers and plot the various hydrogen and hydrophobic
interactions. Amino acids Lys536 and Cys530 of
OsMPK3 form hydrogen bonds with Glu33 and Ser286
of OsAux/LAX respectively at distances of 2.55 and 2.42
Ao (Fig. 3a). Amino acids Cys556, Ala546 and Gly554 of
OsMPK4 form hydrogen bonds with Asn164, Thr319,
and Thr222 respectively, at distances of OsAux/LAX1
with distance 3.13, 3.20 and 2.25 Ao (Fig. 3b). Amino
acids Gly561 and Tyr563 of OsMPK6 form hydrogen
bonds with Thr230 and Arg271 of OsAux/LAX1 at dis-
tances of 3.31 and 3.16 Ao (Fig. 3c).

Yeast Two-hybrid Interactions of MPKs and LAX1
Auxin is an important hormone that regulates growth,
development, tropism, apical dominance and several
other processes in plants [21–23] as well as plays a cru-
cial role in root development [6, 24, 25]. Auxin is syn-
thesized in the aerial parts of the plant and transported
toward the root tip to facilitate root development [26].
The transport of auxin from the aerial part of the plant
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to the root tip is conducted by specialized auxin trans-
porter molecules, popularly known as auxin influx and
efflux carriers [27–32] in a polarized manner [33]. Auxin
influx carrier (Aux/LAX), a transmembrane amino acid
transporter infuses the auxin molecule into the cell and
the efflux carrier exports the auxin molecule to the adja-
cent cell in polarized manner [34–36]. Transport of the
auxin molecule across the plasma membrane is an active
process; therefore, the carrier molecules must be acti-
vated for the process to occur [35, 37]. Protein phos-
phorylation by kinase is one of the most important
process that phosphorylates the target protein and leads
to activation so it can carry out its active process [1, 38].
Mitogen activated protein kinases are most important
family proteins found in plants which enable diverse cel-
lular processes [1, 2]. Mitogen activated protein kinases
have been reported to phosphorylate the target protein
at the serine/proline (SP) or threonine/proline (TP)
amino acid (S/T-P motif ) [9]. We found that the auxin
signaling protein, OsAux/LAX1 contains an S-P motif at
88th position indicating that MPKs might phosphorylates

the OsAux/LAX1 protein. To carry out phosphorylation
events in the target protein (OsAux/LAX1), OsMPK first
interacts with the protein via a hydrogen bond (Fig. 3)
after which it carries out its phosphorylation event. The
protein-protein interaction sites are different from the
phosphorylation sites.
To reconfirm the presence of potential MPK phos-

phorylation sites in OsAux/LAX1, we conducted in-
silico prediction to identify phosphorylation of the
OsAux/LAX1 protein using the kinasephos2.0 server
[39]. OsAux/LAX1 was found to contain at least ten pu-
tative potential phosphorylation sites that could be phos-
phorylated by MPKs (Fig. 4). Although it OsAux/LAX1
was predicted to have ten potential MPK phosphoryl-
ation sites, it contained an S-P motif at 88th position, in-
dicating that this location was most likely to undergo
phosphorylation by MPK. Therefore, we cloned the
OsAux/LAX1 (Fig. 5) and OsMPKs (OsMPK3, OsMPK4
and OsMPK6) (Fig. 6) genes with suitable restriction
sites (SmaI and NcoI) (Table 2). Transformation was
conducted by inserting the OsAux/LAX1 gene into the

Fig. 1 Protein-protein docking orientations of the homology models of OsMPK and OsAux/LAX after building the dimers. OsMPKs are shown in
blue and OsAux/LAX1 protein is shown in cyan. The interacting residues of OsMPKs are shown in red color whereas the interacting residues of
OsAux/LAX1 are shown in green

Table 1 Procheck Analysis of OsMPKs and OsAux/LAX1

Protein
Set 
Size

Predicted 
RMSD

Predicted 
Native 

Overlap 
(3.5 Å)

Sequence 
Identity

z-
DOPE

GA34
1

z-pair z-surf z-combi

OsAux/LAX1 11 17.139 0.060 30.000 -0.049 0.657 -2.390 -2.699 -3.717 

OsMPK3 3795 2.708 0.893 30.000 -1.078 1.000 -9.098 -7.837 -11.965 

OsMPK4 3318 2.962 0.885 30.000 -1.053 1.000 -9.125 -7.106 -10.980 

OsMPK6 2846 3.842 0.823 30.000 -0.801 1.000 -8.031 -7.299 -10.655 

z-score of protein access the quality of model using the normalized DOPE (Discrete Optimized Potential Energy) method. The DOPE is based on an improved
reference state that corresponds to noninteracting atoms in a homogenous sphere with the radius dependent on sample native structure and thus it counts for
the finite and spherical shape of the native structures. A positive Z-score are likely to be poor models, while the scores lower than −1 or so are likely to be good
acceptable model. GA341: GA341 parameter derived from the statistical potential and shows the reliability of a protein model. A model is predicted to be most
reliable when the model score is higher than pre-specified cutoff (0.7) and has probability of the correct fold that is larger than 95 %. A protein model is
considered correct when the C-alpha atom superpose within 3.5Ao of their correct position. z-pair: A pairwise statistical potential that contributes to GA341.
z-surf: a surface statistical potential that contributes to GA341. z-combi: a combined statistical potential that contributes to GA341
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AD vector and the OsMPKs gene into the BD vector.
Transformed yeast constructs were then grown in selec-
tion media [(DO) drop out and (DDO) double drop out].
The yeast-two hybrid result in drop out (DO) media that
lack of -Leu/-Trp amino acids shows, OsMPK3,
OsMPK4 and OsMPK6 interacts with OsLAX1 and even
colony was developed OsLAX1 transformed with empty
vector (AD and BD) (Fig. 7) [40]. The empty vector did

not contain any construct of the OsMPK gene. To re-
confirm these findings, the colonies obtained from DO
media were again sub-cultured in double drop out
(DDO) media that lacking the -Ade/-His/-Leu and–Trp
(Fig. 7) amino acids [40]. These results suggest that,
OsMPK3, OsMPK4 and OsMPK6 interact physically
with OsAux/LAX1 (Fig. 7). As shown in the figure,
OsAux/LAX1 in AD vector transformed with OsMPKs

Fig. 2 Ramachandran plot analysis of the homology models of OsMPKs and OsAux/LAX. Plot statistics for OsAux/LAX1: Residues in most favored
regions [A, B, L] 305 (90.2 %), Residues in additional allowed regions [a, b, l, p] 26 (7.7 %), Residues in generously allowed regions [~a, ~b, ~l, ~p]
5 (1.5 %), Residues in disallowed regions 2 (0.6 %), Number of non-glycine and non-proline residues 338 (100.0 %). Number of end-residues (excl.
Gly and Pro) 2, Number of glycine residues (shown as triangles) 30, Number of proline residues 15, Total number of residues are 385; OsMPK3:
Residues in most favored regions [A,B,L] 269 (87.3 %), residues in additional allowed regions [a, b, l, p] 35 (11.4 %), residues in generously allowed
regions [~a, ~b, ~l, ~p] 3 (1.0 %), residues in disallowed regions 1 (0.3 %). Number of non-glycine and non-proline residues 308 (100.0 %). Number
of end-residues (excluding Gly and Pro) 1, number of glycine residues (shown as triangles) 11, number of proline residues 22, Total number of
residues are 342; OsMPK4: Residues in most favored regions [A, B, L] 270 (85.7 %), residues in additional allowed regions [a, b, l, p] 40 (12.7 %),
residues in generously allowed regions [~a, ~b, ~l, ~p] 5 (1.6 %), residues in disallowed regions 0 (0.0 %). Number of non-glycine and non-proline
residues 315 (100.0 %). Number of end-residues (excl. Gly and Pro) 0, number of glycine residues (shown as triangles) 16, number of proline
residues 21, Total number of residues are 352; OsMPK6: Residues in most favored regions [A, B, L] 249 (82.5 %), residues in additional allowed
regions [a, b, l, p] 41 (13.6 %), residues in generously allowed regions [~a, ~b, ~l, ~p] 10 (3.3 %), residues in disallowed regions 2 (0.7 %). Number
of non-glycine and non-proline residues are 302 (100.0 %). Number of end-residues (excl. Gly and Pro) 1, number of glycine residues (shown as
triangles) 11, number of proline residues 19, total number of residues are 333
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Fig. 3 (See legend on next page.)
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in BD vector, resulted in development of colony in DDO
media. Similarly, colonies were observed when OsAux/
LAX1 in BD vector was transformed with OsMPK con-
struct present in AD vector (swapping experiment), col-
ony was observed (Fig. 7). Taken together, these finding
indicate that OsMPKs and Aux/LAX1 interacted with
each other. When OsMPKs constructs were transformed
with either empty AD or empty BD vector in double
drop out (DDO) media, no colonies were developed
(Fig. 7) suggesting that, OsMPKs and OsAux/LAX1

protein physically interact with each other and did not
grow in DDO media due to absence of interacting part-
ner genes. These finding indicates that OsMPKs and
OsAux/LAX1 interact physically with each other.

Conclusion
Auxin signaling event is crucial to growth and develop-
ment of plants. However, the auxin signaling pathway is
complex and involves interactions with several cascades.
The result of the present study indicated that the MPK

Fig. 4 Phosphorylation site of OsAux/LAX1 predicted to be phosphorylated by MPKs. The prediction was conducted using Kinasephos2.0 server
(http://kinasephos2.mbc.nctu.edu.tw/). The OsAux/LAX1 protein sequence was utilized to identify putative phosphorylation sites of MPKs

(See figure on previous page.)
Fig. 3 Hydrophobic and hydrogen bond forming residues of OsMPK and OsAux/LAX1. a Hydrophobic and hydrogen bond forming residues of
OsMPK3-LAX1 dimer. OsMPK3 residues are shown at the top in blue and LAX1 residues shown at the bottom in black. Hydrophobic interactions
are shown without any line and hydrogen bonds are shown as green dotted lines. b Hydrophobic and hydrogen bond forming residues of
OsMPK4-OsAux/LAX1 dimer. OsMPK4 residues are shown at the top in blue and LAX1 residues are shown at the bottom in black. Hydrophobic
interactions are shown without any lines and hydrogen bonds are shown as green dotted lines. c Hydrophobic and hydrogen bond forming
residues of OsMPK6-OsAux/LAX1 dimer. OsMPK6 residues are shown at the top in blue and LAX1 residues are shown at the bottom in black.
Hydrophobic interactions are shown without any lines and hydrogen bonds are shown as green dotted lines
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cascade is involved in auxin signaling events. This is the
first report regarding involvement of MPK pathway in
auxin signaling events.

Methods
Sequence Retrieval and Homology Modeling
Prior to homology modeling, the sequences of OsMPK3,
and OsMPK4 were retrieved from the NCBI protein se-
quence database (http://www.ncbi.nlm.nih.gov/protein)
in FASTA format. The sequences of OsMPK6 and
OsAux/LAX1 were retrieved from the “rice genome

annotation database” [41]. The Genebank accession
numbers of OsMPK3, and OsMPK4 are DQ826422 and
FJ621301 respectively while protein identification num-
bers of OsMPK6 and OsAux/LAX1 are LOC_Os06g06090
and LOC_Os02g01100 respectively (rice genome annota-
tion project). An excellent relationship to study the pro-
tein primary and secondary structure can be achieved by
homology based modeling [42]. It is possible to under-
stand the protein function by computational modeling of
a target protein using its proper template. This compara-
tive modeling is based on the assumption that two

Fig. 6 Agarose gel electrophoresis photograph of cloned OsMPKs. Amplified OsMPK3, OsMPK4 and OsMPK6 genes are 1110, 1131 and 1197 nucleotides
long, respectively. The letter a, b, c (OsMPK3); a, b, h (OsMPK4); a, c, e (OsMPK6) in gel photograph of colony PCR of MPKs represents different selection
plate names from where transformed colonies were taken to run colony PCR

Fig. 5 Agarose gel electrophoresis photograph of cloned OsAux/LAX1 gene. The amplified gene is 1725 nucleotides long
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proteins will have tertiary structure that shares a high per-
centage of similarity [42].
Modeling was conducted using Modeller 9v11. Ini-

tially, 100 models were developed for the protein, from
which only the model with lowest discrete optimized
protein energy (DOPE) score was selected for further
analysis (Fig. 8) [43]. A positive z- score in DOPE are
likely to be poor models, while the scores lower than −1
or so are acceptable model. A model is predicted to be
most reliable when the model score is higher than pre-
specified cutoff (0.7) and has probability of the correct
fold that is larger than 95 %. The target model was later
refined by side chain refinement and loop modeling to
increase the communion score of each residue. The loop

prediction algorithms, LOOPER [44] and ChiRotor [45],
were used to conduct the loop modeling and side chain
refinement respectively.

Structural Assessment
The models quality was checked by energetic and geomet-
ric means. The modeled homology structures were further
validated using PROCHECK [11, 46] ERRAT [15] and
VERIFY3D [16]. The PROCHECK software analyzes the
stereochemical properties to assess quality of the Rama-
chandran plot, planarity of the peptide bond, the main
chain hydrogen bond energy, Cα chiralities, non bonded in-
teractions, and the overall G factor [46]. The ERRAT algo-
rithm based on the statistical parameters of non-bonded

Fig. 7 Yeast two-hybrid interaction of assay of OsMPKs and OsAux/LAX1. The transformed yeast constructs were grown in selection media [drop out
(DO) and double drop out (DDO)]. Drop out media lacks -Leu/-Trp and double drop out media lacks –Ade/- His/-Leu and –Trp amino acids. In the study,
the OsAux/LAX1 gene was incorporated into BD vector and OsMPK genes were incorporated into AD vector and vice versa. A swapping assay was
conducted by incorporating OsAux/LAX1 into AD vector and OsMPKs in BD vector. Transformed colonies were first grown in DO media. The colonies
raised in DO were then plated in DDO media. The colony those grown in DDO media were considered to be interacting with each other. OsAux/LAX1
in AD vector and OsMPKs in BD vector and vice versa grew in DDO media, confirming that OsAux/LAX1 interacts with MPKs. When OsAux/LAX1 gene in
AD and BD vector was transformed with empty vector (BD and AD, respectively), colonies were observed in DO media but not in DDO media. Similarly,
when OsMPKs in AD and BD vector were transformed with empty BD and empty AD vector, no colonies were observed in DDO media. This confirms
that neither OsAux/LAX1 nor OsMPKs were able to grow in DDO media due to lack of their interacting gene. Absence of colonies in DDO media in
empty vector confirms that, there is no auto-activation of yeast-two hybrid assay and the interactions are positive

Table 2 Forward and Reverse Primer Sequences used to Clone the OsMPKs and OsAux/LAX1 Genes

Gene Accession No. Forward Primer Reverse Primer Restriction 
sites

OsMPK3 DQ826422 TCCCCCGGGATGGACGGGGCGCCGG ATGCCATGGGTACCGGAAGTTTGGGTTC SmaI, NcoI
OsMPK4 FJ621301 TCCCCCGGGATGGATTCCTCCTCCGGC ATGCCATGGGTAGGGAGGATCCGGATTA SmaI, NcoI
OsMPK6 LOC_Os06g06090 TCCCCCGGGATGGATTCCTCCTCCGGC ATGCCATGGGTAGGGAGGATCCGGATTA SmaI, NcoI
OsAux/LAX1 LOC_Os02g01100 TCCCCCGGGATGAGATCCCACGAGAT ATGCCATGGGGTGTAGTTCTGGATAATCT SmaI, NcoI

The highlighted portion indicates the restriction sites added with the primer sequence
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interactions between different types of atoms and subse-
quently provides the accuracy of the protein model [15].
VERIFY3D checks the compatibility of the atomic models
with its own amino acid sequence. A high VERIFY3D pro-
file score indicates a better quality of model [16]. For fur-
ther evaluation of the models, the ModEval Model
Evaluation Server was used to calculate different model
scores including z-Dope, GA341, z-pair, z-surf, and z-
combi [12, 47, 48].
Protein-protein plays important roles in different bio-

logical processes, including signal transduction, gene ex-
pression, cellular transport, inhibition of enzyme activities,
and the association of multi-domain proteins which leads
to creation of stable protein-protein complexes important
to meet their biological functions [49–51]. A protein-
protein docking study was conducted to analyze the inter-
action of OsMPK3, OsMPK4 and OsMPK6 with OsAux/
LAX1. The modeled structures were submitted to the
GRAMM-X docking server [18] one at a time to achieve
solid body docking using the fast Fourier transformation
process by employing the smoothed Lennard-Jones poten-
tial, refinement stage and knowledge-based scoring, which
provides the best surface match. Three dimers were
formed after each successful docking, OsMPK3-OsAux/
LAX1, OsMPK4-OsAux/LAX1 and OsMPK-OsAux/
LAX1. The best dimer orientation found upon protein-
protein docking, was again fed to the GRAMM-X server
to obtain initial dimer orientations.

Cloning of OsMPK and OsLAX1
The OsMPKs (OsMPK3, OsMPK4 and OsMPK6) se-
quences were cloned from Oryza sativa using the proper
adapter primer sequences for restriction digestion, after
which the full length cDNA was amplified (Table 2) [40].
Amplified OsMPKs and OsAux/LAX genes were con-
firmed by sequencing and all the clones were confirmed
to be in the proper reading frame. The OsMPKs
(OsMPK1, OsMPK2, OsMPK3) and OsAux/LAX1 genes
were then cloned in pGADT7 and pGBKT7 vectors (BD
Bioscience, USA) for yeast two-hybrid (Y2H) analysis as
previously reported [40]. A match maker yeast two-
hybrid assay kit was used to check the protein-protein
interactions (BD Bioscience, USA).
Yeast competent cells (AH109) were prepared according

to the manufacturer’s instruction for transformation of
GADT7 and pGBKT7 vectors (BD Bioscience, USA). The
OsMPKs and OsAux/LAX1 constructs were co-
transformed for yeast two-hybrid analysis. Transformation
was carried out in PEG/LiAc (polyethylene glycol/lithium
acetate) solution at 30 °C for one hour in a water bath
while shaking at 200 rpm. Transformed cells were then
centrifuged at 700 x g for five minutes, after which the
pellet was recovered and co-transformed constructs were
plated in selected drop out (DO) nutrient medium that
lacks -Leu and -Trp (SDO/-Leu/-Trp) amino acid. The
colonies obtained from DO media were then streaked on
selective double drop out (DDO) media deficient in the

Fig. 8 DOPE plot of OsMPKs and OsAux/LAX1. The protein residue numbers are plotted on the x-axis and the DOPE energies of each residue are plotted
in the Y-axis. The predicted models of has lower optimized energy. The lower optimized energy confirms the higher stability of predicted protein model
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amino acids Ade, His, Leu and Trp (SD/-Ade/-His/-Leu/-
Trp). Blank pGADT7 and pGBKT7 vectors were used as
controls in both selective media.
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MPK: Mitogen Activated Protein Kinase; MP2K: Mitogen Activated Protein
Kinase Kinase; MP3K: Mitogen Activated Protein Kinase Kinase Kinase; OsAux/
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Energy; Y2H: Yeast two Hybrid; SDO: Single Dropout; DDO: Double Dropout.

Competing interest
The author’s have no competing interest to declare.

Authors’ contributions
TKM: conceived the idea, performed the experiments and drafted the
manuscript, NM: analyzed the data and drafted the manuscript, PP:
performed in-silico analysis and HB: revised the manuscript. All authors read
and approved the final manuscript.

Acknowledgements
This work was carried out with the support of the “Cooperative Research
Programme for Agriculture Science & Technology Development
(PJ01049704)” Rural Development Administration, Republic of Korea. The
funder played no role in the study, design, data collection and analysis,
decision to publish or preparation of the manuscript.

Author details
1School of Biotechnology, Yeungnam University, Gyeongsan 712749,
Republic of Korea. 2Department of Biotechnology, North Orissa University, Sri
Ramhandra Vihar, Takatpur, Orissa 757003, India. 3Regional Medical Research
Center, NE Region, Indian Council of Medical Research Dibrugarh, 786001
Assam, India.

Received: 8 September 2015 Accepted: 21 October 2015

References
1. Mohanta TK, Arora PK, Mohanta N, Parida P, Bae H. Identification of new

Members of the MAPK Gene Family in Plants Shows Diverse Conserved
Domains and Novel Activation Loop Variants. BMC Genomics. 2015;16:58.

2. Sinha AK, Jaggi M, Raghuram B, Tuteja N. Mitogen-Activated Protein Kinase
Signaling in Plants Under Abiotic Stress. Plant Signal Behav. 2011;6:196–203.

3. Rodriguez M, Petersen M, Mundy J. Mitogen-Activated Protein Kinase
Signaling in Plants. Annu Rev Plant Biol. 2010;61:621–49.

4. Raina SK, Wankhede DP, Jaggi M, Singh P, Jalmi SK. CrMPK3, a Mitogen
Activated Protein Kinase from Catharanthus Roseus and its Possible Role in
Stress Induced Biosynthesis of Monoterpenoid Indole Alkaloids. BMC Plant
Biol. 2012;12:1.

5. Tanoue T, Adachi M, Moriguchi T, Nishida E. A Conserved Docking Motif in
MAP Kinases Common to Substrates, Activators and Regulators. Nat Cell
Biol. 2000;2:110–6.

6. Singh P, Mohanta TK, Sinha AK. Unraveling the Intricate Nexus of Molecular
Mechanisms Governing Rice Root Development: OsMPK3/6 and Auxin-Cytokinin
Interplay. PLoS One. 2015;10, e0123620.

7. Caffrey DR, O’Neill LA, Shields DC. The Evolution of the MAP Kinase
Pathways: Coduplication of Interacting Proteins Leads to new Signaling
Cascades. J Mol Evol. 1999;49:567–82.

8. Dóczi R, Okrész L, Romero AE, Paccanaro A, Bögre L. Exploring the
Evolutionary Path of Plant MAPK Networks. Trends Plant Sci. 2012;17:518–25.

9. Sörensson C, Lenman M, Veide-Vilg J, Schopper S, Ljungdahl T, Grøtli M, et
al. MAPKs MPK3 and MPK6 Leads to Identification of new Substrates.
Biochem J. 2012;446:271–8.

10. Wu S, Zhang Y. LOMETS: A Local Meta-Threading-Server for Protein
Structure Prediction. Nucleic Acids Res. 2007;35:3375–82.

11. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM. AQUA
and PROCHECK-NMR: Programs for Checking the Quality of Protein
Structures Solved by NMR. J Biomol NMR. 1996;8:477–86.

12. Eramian D, Eswar N, Shen M-Y, Sali A. How Well can the Accuracy of
Comparative Protein Structure Models be Predicted? Protein Sci. 2008;17:1881–93.

13. Hollingsworth SA, Karplus PA. A Fresh Look at the Ramachandran Plot and
the Occurrence of Standard Structures in Proteins. Biomol Concepts.
2010;1:271–83.

14. Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of
Polypeptide Chain Configurations. J Mol Biol. 1963;7:95–9.

15. Colovos C, Yeates TO. Verification of Protein Structures: Patterns of
Nonbonded Atomic Interactions. Protein Sci. 1993;2:1511–9.

16. Luthy R, Bowie JU, Eisenberg D. Assessment of Protein Models With Three-
Dimensional Profiles. Nature. 1992;356:83–5.

17. Bowie JU, Ltcy R, Eisenberg D. A Method to Identify Protein That Fold into a
Known Three-Dimensional Structure. Science. 1990;253.

18. Tovchigrechko A, Vakser IA. GRAMM-X Public web Server for Protein-Protein
Docking. Nucleic Acids Res. 2006;34:310–4.

19. Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, et al. Improving
Physical Realism, Stereochemistry, and Side-Chain Accuracy in Homology
Modeling: Four Approaches That Performed Well in CASP8. Proteins Struct
Funct Bioinforma. 2009;77:114–22.

20. Laskowski RA, Swindells MB. LigPlot+: Multiple Ligand-Protein Interaction
Diagrams for Drug Discovery. J Chem Inf Model. 2011;51:2778–86.

21. Calderon-Villalobos LI, Tan X, Zheng N, Estelle M. Auxin Perception–Structural
Insights. Cold Spring Harb Perspect Biol. 2010;2:a005546.

22. Vanneste S, Friml J. Auxin: A Trigger for Change in Plant Development. Cell.
2009;136:1005–16.

23. Krupinski P, Jönsson H. Modeling Auxin-Regulated Development. Cold
Spring Harb Perspect Biol. 2010;2:a001560.

24. Lavenus J, Goh T, Roberts I, Guyomarc’h S, Lucas M, De Smet I, et al. Lateral
Root Development in Arabidopsis: Fifty Shades of Auxin. Trends Plant Sci.
2013;18:450–8.

25. Overvoorde P, Fukaki H, Beeckman T. Auxin Control of Root Development.
Cold Spring Harb Perspect Biol. 2010;2:a001537.

26. Woodward AW, Bartel B. Auxin: Regulation, Action, and Interaction. Ann Bot.
2005;95:707–35.

27. Viaene T, Delwiche CF, Rensing SA, Friml J. Origin and Evolution of PIN
Auxin Transporters in the Green Lineage. Trends Plant Sci. 2013;18:5–10.

28. Mohanta T, Mickael M, Nibedita M, Chidananda NK. In-Silico Identification
and Phylogenetic Analysis of Auxin Efflux Carrier Gene Family in Setaria
Italica L. African J Biotechnol. 2014;13:211–25.

29. Mohanta TK, Mohanta N. Genome Wide Identification of Auxin Efflux Carrier
Gene Family in Physcomitrella Patens. J Biotechnol Sci. 2013;1:54–64.

30. Haga K, Sakai T. PIN Auxin Efflux Carriers are Necessary for Pulse-Induced
but not Continuous Light-Induced Phototropism in Arabidopsis. Plant
Physiol. 2012;160:763–76.

31. Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SN, Chen RJ, Masson PH,
et al. Variation in Expression and Protein Localization of the PIN Family of
Auxin Efflux Facilitator Proteins in Flavonoid Mutants with Altered Auxin
Transport in Arabidopsis thaliana. Plant Cell. 2010;16:1898–911.

32. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, et al. The PIN
Auxin Efflux Facilitator Network Controls Growth and Patterning in
Arabidopsis Roots. Nature. 2005;433:39–44.

33. Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, et al.
Regulation of Polar Auxin Transport by AtPIN1 in Arabidopsis Vascular
Tissue. Science. 1998;282:2226–30.

34. Friml J, Palme K. Polar Auxin Transport–old Questions and new Concepts?
Plant Mol Biol. 2002;49:273–84.

35. Mohanta TK, Mohanta N, Bae H. Identification and expression analysis of
PIN-like (PILS) gene family of rice treated with auxin and cytokinin. Genes.
2015;6(3):622–40.

36. Feraru E, Feraru MI, Kleine-Vehn J, Martinière A, Mouille G, Vanneste S, et al.
PIN Polarity Maintenance by the Cell Wall in Arabidopsis. Curr Biol.
2011;21:338–43.

37. Kramer EM, Bennett MJ. Auxin Transport: A Field in Flux. Trends Plant Sci.
2006;11:382–6.

38. Kanchiswamy CN, Mohanta TK, Capuzzo A, Occhipinti A, Verrillo F, Maffei
ME, et al. Differential Expression of CPKs and Cytosolic Ca2+ Variation in
Resistant and Susceptible Apple Cultivars (Malus x Domestica) in Response
to the Pathogen Erwinia Amylovora and Mechanical Wounding. BMC
Genomics. 2013;14:760.

39. Wong YH, Lee TY, Liang HK, Huang CM, Wang TY, Yang YH, et al.
KinasePhos 2.0: A web Server for Identifying Protein Kinase-Specific
Phosphorylation Sites Based on Sequences and Coupling Patterns. Nucleic
Acids Res. 2007;35:588–94.

Mohanta et al. Biological Procedures Online  (2015) 17:13 Page 10 of 11



40. Wankhede DP, Misra M, Singh P, Sinha AK. Rice Mitogen Activated Protein
Kinase Kinase and Mitogen Activated Protein Kinase Interaction Network
Revealed by In-Silico Docking and Yeast Two-Hybrid Approaches. PLoS One.
2013;8:7–10.

41. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, et al. The TIGR
Rice Genome Annotation Resource: Improvements and new Features.
Nucleic Acids Res. 2007;35:D883–7.

42. Bodade RG, Beedkar SD, Manwar AV, Khobragade CN. Homology Modeling
and Docking Study of Xanthine Oxidase of Arthrobacter sp. XL26. Int J Biol
Macromol. 2010;47:298–303.

43. Shen M, Sali A. Statistical Potential for Assessment and Prediction of Protein
Structures. Protein Sci. 2006;15:2507–24.

44. Spassov VZ, Flook PK, Yan L. LOOPER: A Molecular Mechanics-Based
Algorithm for Protein Loop Prediction. Protein Eng Des Sel. 2008;21:91–100.

45. Spassov VZ, Yan L, Flook PK. The Dominant Role of Side-Chain Backbone
Interactions in Structural Realization of Amino Acid Code. ChiRotor: A
Side-Chain Prediction Algorithm Based on Side-Chain Backbone
Interactions. Protein Sci. 2007;16:494–506.

46. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: A
Program to Check the Stereochemical Quality of Protein Structures. J Appl
Crystallogr. 1993;26:283–91.

47. Colubri A, Jha AK, Shen M, Sali A, Berry RS, Sosnick TR, et al. Minimalist
Representations and the Importance of Nearest Neighbor Effects in Protein
Folding Simulations. J Mol Biol. 2006;363:835–57.

48. Melo F, Sánchez R, Sali A. Statistical Potentials for Fold Assessment. Protein
Sci. 2002;11:430–48.

49. Zhang Y, Gao P, Yuan JS. Plant Protein-Protein Interaction Network and
Interactome. Curr Genomics. 2010;11:40–6.

50. Fukao Y. Protein-Protein Interactions in Plants. Plant Cell Physiol.
2012;53:617–25.

51. Zhu S, Gao F, Cao X, Chen M, Ye G, Wei C, et al. The Rice Dwarf Virus P2
Protein Interacts With ent-Kaurene Oxidases in Vivo, Leading to Reduced
Biosynthesis of Gibberellins and Rice Dwarf Symptoms. Plant Physiol.
2005;139:1935–45.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Mohanta et al. Biological Procedures Online  (2015) 17:13 Page 11 of 11


	Abstract
	Background
	Results
	Conclusion

	Background
	Results and Discussion
	Sequence Retrieval, Template Identification, Homology Modeling and Structural Analysis
	Protein-protein Docking Studies
	Protein-protein Interaction Analysis
	Yeast Two-hybrid Interactions of MPKs and LAX1

	Conclusion
	Methods
	Sequence Retrieval and Homology Modeling
	Structural Assessment
	Cloning of OsMPK and OsLAX1
	Abbreviations

	Competing interest
	Authors’ contributions
	Acknowledgements
	Author details
	References



