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Abstract

Background: Many studies have correlated characteristics of amino acids with crystallization propensity, as part of
the effort to determine the factors that affect the propensity of protein crystallization. However, these characteristics
are constant; that is, the encoded amino acid sequences have the same value for each type of amino acid. To
overcome this inflexibility, three dynamic characteristics of amino acids and protein were introduced to analyze the
crystallization propensity of proteins. Both logistic regression and neural network models were used to correlate
each of two dynamic characteristics with the crystallization propensity of 301 proteins from Arabidopsis thaliana,
and their results were compared with those obtained from each of 531 constant amino acid characteristics, which
served as the benchmark.

Results: The neural network model was more powerful for predicting the crystallization propensity of proteins than
the logistic regression model. Compared with the benchmark, the dynamic characteristics of amino acids provided
good prediction results for the crystallization propensity, and the distribution probability gave the highest sensitivity.
Using 90 % accuracy as a cutoff point, the predictable portion of A. thaliana portions was ranked, and the statistical
analysis showed that the larger the predictable portion, the better the prediction.

Conclusions: These results demonstrate that dynamic characteristics have a certain relationship with the crystallization
propensity, and they could be helpful for the prediction of protein crystallization, which may provide a theoretical
concept for certain proteins before conducting experimental crystallization.
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Background
Protein crystallization is truly a state-of-art technology
because its success is a combination of many factors
involved in the crystallization process. Huge efforts have
so far been made to determine crucial factors involved
in the protein crystallization process based on sequence
information [1–4] in order to discover an indicator of
whether a protein can be crystallized. Needless to say,
this indicator should reveal the very nature of proteins
in relation to their crystallization. As a result, initial atten-
tion was given to the protein length and protein isoelectric
point in their correlation with protein crystallization [5].
These protein characteristics could account for the na-
ture of protein crystallization to some degree but not
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all. Efforts are therefore directed to various character-
istics which can represent any aspect of the nature of
protein, such as physiochemical properties of amino acids
[5–12], in correlation with the success rate of protein
crystallization. Indeed, these characteristics are numerical
values, each represent an aspect of the nature of protein,
and they currently number more than 540 in the amino
acid database AAIndex [13].
Some characteristics account only for a protein, such

as protein length, while some characteristics account
only for an amino acid, such as molecular weight of the
amino acid, but there are few characteristics accounting
for both together. The nature of a protein is not the sum
of the natures of its composite amino acids, although a
characteristic for a protein might be an addition of the
characteristics of its composite amino acids—for example,
the protein isoelectric point is the sum of the composite
amino acid isoelectric points. Over the last decade, we
have determined three characteristics of amino acids that
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vary in different proteins because they account for the
nature of both the protein and its composed amino acids
[14]. We attempted to determine whether these three
characteristics could account for protein crystallization to
some promising degree [15–19], although we would not
expect them to account for the whole nature of the pro-
tein in relation to protein crystallization. The theoretical
approach is to set a model, which is more likely to be of a
regression type, to build a relationship between the pro-
tein’s and amino acids’ characteristics and the successful
rate of protein crystallization [5–12, 15–19].
Arabidopsis thaliana is a model species broadly used in

plant research, many aspects of which draw great atten-
tion such as the circadian clock genes [20], the control of
key regulatory genes at many stages of development dur-
ing the life cycle [21], the diversity of dual targeting mech-
anisms [22], B-GATA transcription factors [23], gravity
influence on the growth direction of higher plants [24],
substrate specificity, and multiple stress tolerance [25].
In this study, we use the neural network and logistic
Table 1 Comparison between constant and dynamic characteristics

Amino acid Number CHAM830106a CHAM830106

P0C0B0 Q8GW13 P0C0B0

(Column 1) (Column 2) (Column 3) (Column 4) (Column 5)

A 6 6 0 0

R 1 5 5 5

N 3 4 2 6

D 10 7 2 20

C 1 0 1 1

E 9 15 3 27

Q 2 6 3 6

G 7 4 0 0

H 4 5 3 12

I 9 2 2 18

L 6 16 2 12

K 17 14 4 68

M 3 2 3 9

F 10 2 4 40

P 4 3 0 0

S 8 13 1 8

T 8 6 1 8

W 1 0 5 5

Y 2 5 5 10

V 11 7 1 11

[UniProtKB:P0C0B0] and [UniProtKB:Q8GW13] are two Arabidopsis thaliana proteins
aCHAM830106 is an amino acid characteristic that describes the number of bonds i
bThe amino acid distribution probability is a dynamic characteristic computed acco
where ! is the factorial, r is the number of a type of amino acid, q is the number of
partitions in the protein for a type of amino acid
cThe future composition of amino acids in a protein was computed using the trans
translated amino acids [14]
regression to investigate the relationship between three
dynamic amino acid characteristics and the success
rate for crystallization of 301 proteins from A. thaliana
(Additional file 1: Table S1), and then compare the results
with those obtained using each of 531 constant amino acid
characteristics (Additional file 1: Table S2).

Results and Discussion
The difference between constant amino acid characteris-
tics documented in AAIndex [13] and dynamic character-
istics [14–19] can be illustrated with two A. thaliana
proteins [UniProtKB:P0C0B0, UniProtKB:Q8GW13]. Both
proteins each contain 122 amino acids, but their amino
acid compositions are different and their alignment re-
veals no similarity. Moreover, our knowledge of these two
proteins is incomplete: P0C0B0 is an uncharacterized
protein whereas Q8GW13 is a putative c-myc binding
protein, which is suggestive of how these two proteins are
represented using a constant amino acid characteristic
from AAIndex [13] and a dynamic characteristic [14–19].
of amino acids

× number Distribution probabilityb Future composition (%)c

Q8GW13 P0C0B0 Q8GW13 P0C0B0 Q8GW13

(Column 6) (Column 7) (Column 8) (Column 9) (Column 10)

0 0.3472 0.2315 1.34 1.27

25 1.0000 0.2880 7.28 1.74

24 0.6667 0.5625 2.43 1.60

140 0.0127 0.2142 0.54 0.94

0 1.0000 0.0000 2.69 0.00

405 0.1967 0.0841 0.74 0.43

36 0.5000 0.1543 2.24 0.99

0 0.2142 0.5625 0.99 1.56

60 0.1875 0.0640 0.76 0.92

36 0.1770 0.5000 0.86 2.70

192 0.3472 0.0568 1.79 0.64

952 0.0549 0.1178 0.29 0.40

18 0.6667 0.5000 0.90 1.02

80 0.1524 0.5000 0.37 1.79

0 0.5625 0.6667 1.17 2.02

104 0.2523 0.0515 0.99 0.62

48 0.2523 0.0386 1.03 1.18

0 1.0000 0.0000 0.60 0.00

50 0.5000 0.2880 1.81 0.61

77 0.1077 0.1071 0.94 1.19

n the longest chain of amino acids [26]
rding to the equation r!/(q0! × q1! ×… × qn!) × r!/(r1! × r2! ×… × rn!) × n–r,
partitions with the same number of amino acids, and n is the number of

lation probability based on the relationship between RNA codons and their



Yan and Wu Biological Procedures Online  (2015) 17:16 Page 3 of 12
Table 1 presents this comparison of constant and dynamic
characteristics. As can be seen, each protein had a differ-
ent composition of amino acids (Table 1, columns 2 and
3). When arbitrarily using an amino acid characteristic,
the CHAM830106 amino acid characteristic describes the
number of bonds in the longest chain of amino acids
[26]; for two proteins, the result is the same (Table 1,
column 4). This was somewhat counterintuitive because
each amino acid should have a different role in different
proteins, at different positions, and with different neigh-
boring amino acids. To modify this inflexibility, the
characteristic was weighed by multiplying the number of
corresponding amino acids (Table 1, columns 5 and 6).
On the contrary, the two dynamic characteristics [14–19]
varied and avoided inflexibility (Table 1, columns 7–10),
which is an advantage over the constant amino acid char-
acteristics documented in AAIndex [13].
Fig. 1 Heat map of the accuracy, sensitivity, and specificity of the crystalliz
regression using each of 535 amino acid characteristics
The previous studies which correlated the amino acid
characteristics with the protein crystallization propensity
[1–4] generally included all available amino acid character-
istics together into a model. Certainly, such an approach
dramatically enhanced the predictability of whether a pro-
tein was likely to be crystallized. However, the aim of this
study was to determine the correlation between any dy-
namic characteristic [14–19] and crystallization propen-
sity, and thus each individual characteristic of amino acids
was used as a benchmark rather than all individual amino
acid characteristics being used together in a model.
Figure 1 displays the heat map of the accuracy, sensi-

tivity, and specificity of the crystallization propensity for
301 A. thaliana proteins predicted by logistic regression
using each of 535 amino acid characteristics. It was obvi-
ous that different amino acid characteristics provided
similar results with very low sensitivity and very high
ation propensity for 301 A. thaliana proteins predicted by logistic
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specificity. Figure 2 shows the comparison of the predic-
tion results in Fig. 1. Each bar represents how many
characteristics resulted in a similar accuracy, sensitivity,
and specificity. For example, the first bar on the left-
hand side in the upper panel indicates that two amino
acid characteristics, FAUJ880109 and FAUJ880110, had
the same accuracy of 0.698. Likewise, the second bar
indicates that five amino acid characteristics had a simi-
lar accuracy (0.706 ± 0.002). Figure 2 demonstrates that
many individual amino acid characteristics produced
similar results, which is consistent with the study that
showed the abundance of amino acid characteristics [27].
This figure also illustrates that two dynamic characteristics
Fig. 2 Comparison of the accuracy, sensitivity, and specificity of the crystal
regression using 531 constant characteristics and two dynamic characterist
[14–19], future composition and distribution probability,
were involved in protein crystallization.
In the logistic regression model, the relationship

appeared somewhat simple:

P yð Þ ¼ 1
1þ eb0þb1x1þ…þb20x20

where x1, x2, … x20 are the characteristics for 20 types of
amino acids, y is the crystallization success rate in 301
A. thaliana proteins (the crystallization success rate of a
protein is either successful or unsuccessful so this value
takes 1 for success and 0 for failure), and b0, b1, … b20 are
lization propensity for 301 A. thaliana proteins predicted by logistic
ics (future composition and distribution probability)
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logistic parameters. The neural network was therefore
applied to model the relationship because, in principle,
this model accounts for various implicit or explicit rela-
tionships [28, 29]. Figure 3 shows the heat map of the
accuracy, sensitivity, and specificity of the crystallization
propensity for 301 A. thaliana proteins fitted by the
neural network using each of 535 amino acid characteris-
tics. Clearly, the neural network could furthermore distin-
guish the difference among analyzed characteristics in
relation to the crystallization propensity. Figure 4 shows
the comparison of the fitting results in Fig. 3, which could
be read as similar to those in Fig. 2. It is worth noting that
the distribution probability gave the highest accuracy and
sensitivity.
Compared with the results obtained using the bench-

mark characteristics, Figs. 1, 2, 3, 4 suggest that dynamic
Fig. 3 Heat map of the accuracy, sensitivity, and specificity of the crystalliz
using each of 535 amino acid characteristics
characteristics of amino acids had a relationship with
the crystallization propensity of the proteins from A.
thaliana. Technically, the results in Figs. 1, 2, 3, 4 were
obtained without dividing the database; that is, the
model parameters obtained from all 301 A. thaliana
proteins were used for predictions. This is generally the
case in the first stage to determine whether a model is
workable. Thereafter, the database should be divided into
two groups, one for generating model parameters and
the other for validation [30, 31]. Several methods of how
to divide the dataset have been developed [31], one of
which is jackknife validation [30–32]. The delete-1 jack-
knife validation in an n-sample dataset uses n—1 sam-
ples from the dataset to produce the model parameters
and then makes a prediction for the deleted sample, so it
requires n predictions rather than a few predictions as
ation propensity for 301 A. thaliana proteins fitted by neural network



Fig. 4 Comparison of the accuracy, sensitivity, and specificity of the crystallization propensity for 301 A. thaliana proteins fitted by neural network
using 531 constant characteristics and two dynamic characteristics (future composition and distribution probability)
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for other methods. This approach is considered better
than that of other methods [31]. Figures 5 and 6 demon-
strated the results of delete-1 jackknife validation obtained
from a 10—1 neural network and their comparison. As
can be seen, the predictions using dynamic characteristics
were no worse than the predictions using the benchmark
characteristics. A relationship between an amino acid
characteristic and crystallization propensity can be judged
with reference to their correlation coefficient. However,
this is not sufficient for the modeling development, which
asks whether this relationship is predictive or descrip-
tive, and therefore the analysis of predictability is more
meaningful [31]. Following this, the result implied that
the dynamic characteristics [14–19] did have a certain
relationship with crystallization propensity. A particular
point from Fig. 6 is that the distribution probability
did not appear superior because it was located in different
areas. Because the specificities were identically high in the
lower panel whereas the sensitivities were relatively low in
the middle panel, the comparison should be directed to
the sensitivity, where the distribution probability gave the
best result.
To estimate a predictive model, comparison of the

sensitivity versus the specificity can be assessed using
receiver operating characteristic (ROC) curve analysis,
which is mainly used for evaluation of various test methods
[33, 34]. The prediction performance of amino acid charac-
teristics can be further distinguished in Fig. 7. Although all



Fig. 5 Heat map of the accuracy, sensitivity, and specificity of the crystallization propensity for 301 A. thaliana proteins validated by delete-1
jackknife validation using each of 535 amino acid characteristics
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predicted results were located in the upper-left triangle,
indicating that their outcomes surpassed a random guess,
some amino acid characteristics resulted in very low sensi-
tivity and their results were located in the lower-left corner
(triangular area). All of the results obtained from logistic
regression scuttled inside this triangular area, indicating
that logistic regression could not effectively screen the
performance of different amino acid characteristics. The
neural network model was more powerful for predicting
the crystallization propensity of proteins. Compared with
the benchmark, the dynamic characteristics of amino acids
provided good prediction results for the crystallization
propensity, and the distribution probability gave the best
results in fitting and better results in validation.
Only two dynamic characteristics [14–19], amino acid

distribution probability and future composition, have so
far been used. Another characteristic, the predictable
portion of amino acid pairs, is mainly related to a whole
protein. Figure 8 shows the results in this regard. In the
two upper panels, each bar represents the accuracy ob-
tained from fitting, where the predictions were con-
ducted without dividing the database, and from delete-1
jackknife validation, where the prediction involved divid-
ing the database. There were 301 bars in those two upper
panels because this database contained 301 crystallized
and noncrystallized proteins from A. thaliana. The 90 %
accuracy was set as a cutoff point to be an acceptable
accuracy. The predictive results were then ranked accord-
ing to the predictable portion of A. thaliana portions,
which brought about the statistical difference (Fig. 8,
lower panel), suggesting that the larger the predictable
portion, the better the prediction. Chen et al. [35] used
the collocation of amino acid pairs to predict protein
crystallization, and recently an ensemble method called



Fig. 6 Comparison of the accuracy, sensitivity, and specificity of the crystallization propensity for 301 A. thaliana proteins validated by delete-1
jackknife validation using 531 constant characteristics and two dynamic characteristics (future composition and distribution probability)
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SCMCRYS was developed to estimate the propensity
scores of p-collocated amino acid pairs through a scoring
card method [36], which provides the information that
amino acid pairs do have some relationship with protein
crystallization.
Many studies have explored new approaches to im-

prove the prediction of protein crystallization propensity
using various types of complemented features and com-
plex ensemble classifiers. For example, AdaBoost uses
two filter-mode feature selection methods to obtain 48
important features from 74 re-examined features [10].
PredPPCrys uses a comprehensive set of multifaceted
sequence-derived features and combines a novel multistep
feature selection strategy to predict the crystallization
success [4]. RFCRYS used a random forest classifier
[11]—including predicted surface ruggedness, hydropho-
bicity, side-chain entropy of surface residues and amino
acid composition of the predicted protein surface—to
improve the prediction of crystallization success [12]. Re-
cently, support vector machines have been used to predict
crystallization propensity of proteins based on sequence
information [2, 4, 10, 36]. However, this study focused on
determining whether dynamic characteristics of amino
acids have some relation with protein crystallization, and
thus a single characteristic should be used as the predictor
rather than combined features. At this stage, simple classi-
fication models were suitable to conduct the performance,
like the neural network. The reason why the dynamic



Fig. 7 Comparison of sensitivity versus specificity by means of ROC analysis. Diagonal line is the line of indiscrimination indicating a completely
random guess
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characteristics worked better than constant amino acid
characteristics in AAIndex [13] could be attributed to the
fact that the dynamic characteristics take the amino acid
spatial positions in a protein into account while other
amino acid characteristics focus on the aspect of a single
amino acid regardless of its position in a protein. On the
contrary, the crystallization of a protein is more likely to
be related to a protein structure in three-dimensional
space rather than a certain aspect of a single amino acid.
Conclusions
The results of this study were consistent with our previ-
ous studies [15–19] and confirmed that the dynamic
characteristics [14–19] had a certain relationship with
crystallization propensity of proteins. This appears reason-
able because an amino acid should play different roles at
different positions in a protein with different neighboring
amino acids. However, constant characteristics of amino
acids cannot reflect such changeable aspects. On the con-
trary, the dynamic characteristics of amino acids [14–19]
do share changeable features, which should be more suit-
able to represent a protein. Dynamic characteristics
could thus be useful to predict the propensity of protein
crystallization.
Methods
Data
A total of 301 proteins from A. thaliana were found in
TargetDB [37] under the purified criterion before 2011,
85 of which were also found under the crystallized cri-
terion. These two criteria were once used to develop a
web server for the prediction [8]. Detailed information
for the 301 A. thaliana proteins is presented in Additional
file 1: Table S1.
Dynamic Characteristics for Both Protein and Amino Acids
The first dynamic characteristic is the amino acid distri-
bution probability, which is based on the assumption
that an amino acid’s position in a protein is analog to
different colored balls in different holes, and corresponds
to the problem of occupancy of subpopulations and parti-
tions in probability [38], which computes the probability
for each type of amino acids and is available online [39].
Two worked examples are presented in Table 1 (columns
7 and 8).
The second dynamic characteristic is the amino acid

future composition. This characteristic is based on the
relationship between RNA codons and their translated
amino acids, suggesting the possibility that an amino



Fig. 8 Crystallization accuracy of A. thaliana proteins obtained from model fitting (upper panel) and delete-1 jackknife validation (middle panel),
and statistical comparison of their predictable portion of amino acid pairs (lower panel). Dotted lines indicate the cutoff point for separating the
low accuracy from the high accuracy. Data presented as median with interquartile. *Statistically significant difference compared with the group
of low accuracy at the P <0.001 level (Mann–Whitney rank sum test)
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acid may mutate into another amino acid (Additional file
1: Table S3) [40, 41], and therefore computes the future
composition of a type of amino acid according to its
current composition in a protein and mutating prob-
ability. Two worked examples are presented in Table 1
(columns 9 and 10). This characteristic can be calcu-
lated online [42].
The third dynamic characteristic is the amino acid pair

predictability [14], which is based on the assumption that
an amino acid involved in constructing an amino acid pair
is independent of other amino acids and the probabilistic
principle of multiplication should be applied. For example,
a protein from A. thaliana [UniProtKB:P0C0B0] is com-
posed of 122 amino acids, within which there are 17
lysines (K), seven glycines (G), and eight serines (S).
Accordingly, the amino acid pair KK would appear
twice in this protein (17/122 × 16/121 × 121 = 2.23). If
we can find two KKs in this protein, they are predictable.
The amino acid pair GS should not appear (7/122 × 8/
121 × 121 = 0.46), but it appears three times in this protein
so these amino acid pairs are unpredictable. In this man-
ner, all amino acid pairs in a protein are classified either as
predictable or as unpredictable. This protein has 75.25 %
predictable and 24.75 % unpredictable amino acid pairs.
Generally, the numbers of predictable and unpredictable
pairs are different from protein to protein. This character-
istic can be calculated online [43].

Benchmark
The constant characteristics of amino acids are docu-
mented in AAIndex [13] and served as the benchmark to
compare with the results obtained using dynamic charac-
teristics. Currently, the AAIndex contains more than 540
characteristics to represent various aspects of the nature
of amino acids, such as physicochemical characteristics,
spatial characteristics [44], electronic characteristics [45],
hydrophobic characteristics [46], and predictors for sec-
ondary structures [47]. There were 531 constant char-
acteristics of amino acids used in this study and their
detailed information is presented in Additional file 1:
Table S2. The benchmark went through the same process
as the dynamic characteristics: to code each amino acid in
each A. thaliana protein with an amino acid characteristic
from the AAIndex; to correlate each coded protein with
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its crystallization success rate using logistic regression and
the neural network; to make predictions using the model
parameters; and to compare the predictions based on an
amino acid characteristic with the predictions based on a
dynamic characteristic.

Modeling
Both logistic regression and a 10—1 neural network
were employed to model the relationship between an
amino acid characteristic and success rate of protein
crystallization. Because there were 20 types of amino
acids, the relationship between 20 characteristics of
amino acids (20 predictors) and the success rate of pro-
tein crystallization (one predicted function) was actually
modeled.

Statistical Analysis
The prediction of whether an A. thaliana protein could
be crystallized was compared with what happened in
realty. When an A. thaliana protein was predicted to be
crystallized and was crystallized in reality, this prediction
was classified as true positive (TP). When an A. thaliana
protein was predicted to be not crystallized and was not
crystallized in reality, this prediction was classified as
true negative (TN). When an A. thaliana protein was
predicted to be crystallized but was not crystallized in
reality, this prediction was classified as false positive
(FP). When an A. thaliana protein was predicted to be
not crystallized but was crystallized in reality, this pre-
diction was classified as false negative (FN). Thereafter,
accuracy, sensitivity, and specificity can be computed as
follows:

Accuracy = (TP + TN) / (TP + FP + TN + FN) × 100
Sensitivity = (TP) / (TP + FN) × 100
Specificity = (TN) / (TN + FP) × 100

MatLab [29] was used to perform both logistic regres-
sion and the neural network. The ROC analysis was used
to compare the sensitivity and specificity [48, 49]. Stu-
dent’s t test was used for comparison, and P <0.05 was
considered significant.

Additional file

Additional file 1: Table S1. Presenting the 301 proteins from A. Thaliana
used in this study. Table S2. Presenting the 535 characteristics of amino
acids used in this study. Table S3. Presenting the amino acids and their
translated amino acids. (DOC 780 kb)
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