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Abstract

Background: Previous studies show various results obtained from different motif finders for an identical dataset.
This is largely due to the fact that these tools use different strategies and possess unique features for discovering
the motifs. Hence, using multiple tools and methods has been suggested because the motifs commonly reported
by them are more likely to be biologically significant.

Results: The common significant motifs from multiple tools can be obtained by using MOTIFSIM tool. In this work,
we evaluated the performance of MOTIFSIM in three aspects. First, we compared the pair-wise comparison
technique of MOTIFSIM with the un-gapped Smith-Waterman algorithm and four common distance metrics:
average Kullback-Leibler, average log-likelihood ratio, Chi-Square distance, and Pearson Correlation Coefficient.
Second, we compared the performance of MOTIFSIM with RSAT Matrix-clustering tool for motif clustering. Lastly,
we evaluated the performances of nineteen motif finders and the reliability of MOTIFSIM for identifying the
common significant motifs from multiple tools.

Conclusions: The pair-wise comparison results reveal that MOTIFSIM attains better performance than the un-
gapped Smith-Waterman algorithm and four distance metrics. The clustering results also demonstrate that
MOTIFSIM achieves similar or even better performance than RSAT Matrix-clustering. Furthermore, the findings
indicate if the motif detection does not require a special tool for detecting a specific type of motif then using
multiple motif finders and combining with MOTIFSIM for obtaining the common significant motifs, it improved the
results for DNA motif detection.

Keywords: Binding sites, DNA motif, Motif detection tool, Motif similarity comparison, Motif clustering, Merging
similar motifs

Background
Transcription factors (TFs) are proteins that can bind
to several regions of DNA. The binding regions are
short sequences of DNA called transcription factor
binding sites (TFBSs). They typically range from 8-10
to 16–20 bp [1]. The TFs bind to DNA in a particular
way that the binding sites are similar and they differ
only by some nucleotides from one another [1]. Sev-
eral similar binding sites form a binding site motif.
The binding between TFs and DNA has an important
role in gene expression as it controls several vital
processes in development, responses to environmental
stresses, diseases, and many others [2]. Detecting
binding site motifs can reveal the TFs that control
the gene expression. Thus, numerous motif finders
have been developed such as MEME [3], DREME [4],

MEME-ChIP [5], CisFinder [6], RSAT peak-motifs [7],
PScanChIP [8], and W-ChIPMotifs [9] among many
others. We reviewed nine Web tools for finding
binding site motifs in ChIP-Seq data [10]. The results
reveal that different tools reported different results
for an identical dataset. The cause is that they
implemented different algorithms and possess unique
features for discovering the motifs. Hence, using mul-
tiple tools and methods has been advised because the
motifs commonly reported by them are more likely to
be biologically significant [10]. Nevertheless, the re-
sults from multiple tools need to be compared for
identifying the common significant motifs. MOTIF-
SIM tool was designed for this purpose in our previ-
ous studies [11, 12].
In this work, we evaluated the performance of MOTIF-

SIM in three aspects. First, we compared the pair-wise
comparison technique of MOTIFSIM with the un-gapped
Smith-Waterman (USW) algorithm [13] and four
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common distance metrics namely average Kullback-Lei-
bler (AKL) [14], average log-likelihood ratio (ALLR) [15],
Chi-Square distance (CS) [16], and Pearson Correlation
Coefficient (PCC) [17]. Second, we compared MOTIFSIM
with RSAT matrix-clustering tool for motif clustering
[18]. Finally, we assessed the performances of nineteen
motif finders and the reliability of MOTIFSIM for identi-
fying the common significant motifs from multiple tools.

Methods
The reader can find the original MOTIFSIM algorithm
in the Additional file 1. A detailed discussion of this al-
gorithm can be found in [11] and a slightly modified ver-
sion of it can also be found in [12].

Assessing MOTIFSIM algorithm for pair-wise motif
comparison
We evaluated MOTIFSIM for both string-based and
matrix-based pair-wise comparisons. For string-based
comparison, we compared MOTIFSIM with the USW
algorithm. The motifs are in IUPAC string format
[19]. We implemented the NUC.4.4 substitution
matrix for this comparison [20]. We chose USW as it
has been studied by Mahony et al. for motif similarity
comparison and the authors showed it is more effi-
cient when it is used with other column metric [21].
For matrix-based comparison, we assume the columns
are independent in the matrices. We compared
MOTIFSIM with AKL, ALLR, CS, and PCC. These
distance metrics have been used in several studies for
measuring similarity between motifs [16, 21–24]. We
used a minimum overlapping window of four columns
for pair-wise comparisons as presented in [11]. For
each overlapping position between two matrices in
both forward and backward directions including their
reverse complements, we calculated a similarity score
between them by using AKL, ALLR, CS, PCC, and
MOTIFSIM.

Un-gapped Smith-Waterman algorithm
The Smith-Waterman (SW) algorithm is a local
pair-wise sequence alignment for finding the local re-
gions that have highest similarity between two se-
quences. In this assessment, we did not allow gaps for
local alignment. The USW pair-wise sequence alignment
returns a best raw score S. To obtain the statistical sig-
nificance for this raw score, we calculated the expected
number of un-gapped alignments with score S found
with random sequences by using eq. (1) [25].

E Sð Þ ¼ Kmne−λS ð1Þ

where S is a raw score of the alignment, m and n are the
lengths of two sequences, K and λ are Karlin-Altschult

statistics parameters, and E is the E-value of the score S.
BLAST uses K = 0.132 and λ = 0.316 [26, 27]. In this
evaluation, we used K = 0.1 and λ = 0.3. Since we com-
pared a given motif with several other motifs, we selected
the smallest E-value for determining the best match for a
given motif. This E-value is the expected number of se-
quences that produce the same or better score by chance.
To perform a pair-wise comparison using MOTIFSIM, we
used a similarity threshold of 75% or more. This threshold
has been evaluated in our previous study and showed to
be efficient for comparison [11].

Distance metrics
Table 1 shows four distance metrics for comparing with
MOTIFSIM. The AKL is the weighted average of
log-likelihood ratio distance between two distributions
[21]. We adopted it from Mahony et al. [21]. The au-
thors subtract the AKL score from 10 to convert it into
a similarity score. The ALLR was adopted from Schones
et al. [24]. It is a weighted sum of two log-likelihood ra-
tios that was introduced by Wang and Stormo [24]. We
used a prior probability of 0.25 for base b for this dis-
tance metric. We also implemented the PCC from
Schones et al. [24]. The PCC is a popular metric for
measuring the correlation between two sets of variables.
In this case, they are two aligned columns of two matri-
ces. We calculated the score for an alignment position
between two matrices by taking the sum of individual
column comparison scores for three distance metrics
above. We adopted the Fisher-Irwin exact test that was
used by Schones et al. [24] for calculating the P-value of
a similarity score obtained at an alignment position of
two columns X and Y. The P-value for an alignment
position between two matrices is the product of P-values
of the individual columns [24]. We used a P-value ≤0.05
for filtering out the insignificant scores as they indicate a
significant dissimilarity between two matrices. Thus, a
larger P-value indicates more similar between two matri-
ces. We selected the largest P-value to represent the best
alignment between two matrices.
Lastly, we adopted the χ2 distance from Kielbasa et al.

for comparing with MOTIFSIM [16]. It is also a popular
metric for measuring the distance between position fre-
quency matrices. We calculated the χ2 distance for the
aligned columns at position i by using the equation in
Table 1. We used a threshold ≤7.81, which corresponds
to a P-value ≤0.05 for selecting a significant similarity
score at each position [16]. The distance D between two
matrices is obtained by counting the number of χ2 scores
that exceed the threshold of 7.81 in the alignment of
two matrices [16]. Thus, a smaller D value represents a
better match between two motifs. We selected the smal-
lest D among all possible alignments between two motifs
to represent the best score between them.
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MOTIFSIM
The core of MOTIFSIM algorithm is pair-wise align-
ments of position specific probability matrices (PSPMs).
The similarity score of an alignment can be selected by
using the percentage. In our previous study [11], it
showed a 75% or more to be an efficient threshold for
filtering the motifs. Hence, we used this threshold here
again for comparisons.

Motif clustering comparison
The core of Matrix-clustering is pair-wise comparisons of
Position Specific Scoring Matrices. The similarity between
motifs is measured by using RSAT compare-matrices,
which allows combining several distance metrics for simi-
larity calculation [18]. The tool builds a global hierarchical
tree from bottom up by using the similarity scores calcu-
lated from pair-wise comparisons [18]. MOTIFSIM also
performs pair-wise comparisons on PSPMs. The similarity
scores calculated by MOTIFSIM are used to build the dis-
tance matrices, which are fed into hclust function in R for
building the trees [12]. The hclust function also imple-
mented the hierarchical clustering algorithm.
We compared the performances of both tools for clus-

tering the motifs that were selected from the Jaspar
database [28]. The method for selecting the motifs is
presented in the Datasets section. We used the default
setting provided by each tool to run the experiments.
The results were generated in multiple formats including
tree format for comparisons. We obtained the count for
the motifs that were correctly classified into their family
in the database by each tool for each dataset. A family
can have at least two or more members. The count was

then used for calculating the percentage of correct clas-
sification by each tool.

Measuring the significance of the global significant motif
We used the assessment method, the benchmark se-
quence datasets, and the on-line assessment tool from
Tompa et al. for this evaluation [29]. We measured the
performances of nineteen motif finders on various
benchmark sequence datasets [29]. For each tool T and
each dataset D, we have a set of known binding sites and
a set of predicted binding sites. Thus, the performance
of T on D can be measured at nucleotide level and at site
level [29]. At the nucleotide level, we calculated four sta-
tistics namely sensitivity (nSn), positive predictive value
(nPPV), specificity (nSP), and correlation coefficient
(nCC). Similarly, at site level, we calculated two statistics
that are sensitivity (sSn) and positive predictive value
(sPPV). These statistics are presented in the Additional
file 1 [29].
The motifs generated by various tools for an identical

sequence dataset were fed into MOTIFSIM for generat-
ing the global significant motifs [11]. Since MOTIFSIM
identifies a list of common significant motifs from a pool
of motifs reported by various tools, we selected the best
common significant motif based on two criteria. First, it
must represent the popular vote by the majority of the
tools. Second, it has the highest rank of similarity score.
Since we know the origin of the common significant
motif, its significance can be calculated by using six sta-
tistics above. We assessed the correctness of the motif
reported by each tool and this assessment covers the se-
lected motif from MOTIFSIM. We then compared the

Table 1 Four distance metrics used in pair-wise comparisons with MOTIFSIM

Metric Formula Description Ref.

Average Kullback-
Leibler (AKL)

AKLðX ; YÞ ¼ 10−

XT

b¼A

f xðbÞ � log
f xðbÞ
f yðbÞ þ

XT

b¼A

f yðbÞ � log
f yðbÞ
f xðbÞ

2

X and Y are two aligned columns of two matrices in
comparison.
fx(b) is the frequency of base b ∈ {A, C, G, T} in column X
and likewise for fy(b) in column Y.
AKL(X,Y) is the similarity score at an alignment position
for two columns X and Y.

21

Average Log-
likelihood Ratio
(ALLR) ALLR ¼

XT

b¼A

nbX � logð f bY
pb

Þ þ
XT

b¼A

nbY � logð f bX
pb

Þ
XT

b¼A

ðnbX þ nbY Þ

nbX is the count of base b ∈ {A, C, G, T} in column X and
likewise for nbY in column Y.
fb = nb/N is the frequency of base b where N is the total
count of all bases in a column.
pb is the prior probability for base b.

24

Pearson Correlation
Coefficient (PCC)

PCCðX ; YÞ ¼

XT

b¼A

ðXb−XÞ � ðYb−YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

b¼A

ðXb−XÞ2 �
XT

b¼A

ðYb−YÞ2
vuut

Xb is the count of base b ∈ {A, C, G, T} in column X and
likewise for Yb in column Y.
X is the average count of bases in column X and likewise
for Y in column Y.

24

χ2 Distance
χ2 ¼

X

b¼A;C;G;T

ðNg;i f b;i−N f ;igb;iÞ2
N f ;iNg;ið f b;i þ gb;iÞ

fb, i is the entries of overlapping parts at position i in
matrix f of the two matrices f and g in comparison
gb, i is the entries of overlapping parts in matrix g
Nf, i = ∑bfb, i, and Ng, i = ∑bgb, i.

16
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correctness for identifying the known motif of each tool
including MOTIFSIM.

Datasets
The motif datasets that were used in the assessment
came from sixteen benchmark sequence datasets in
Table 2 [29]. The sequence datasets came from three
species: Homo sapiens, Mus musculus, and Saccharomy-
ces cerevisiae. The sequence datasets can be in generic or
Markov type [29]. The generic type was generated by
randomly selecting the promoter sequences and then
implanted the known binding sites of the same species
into those sequences. The Markov type was created by
generating random sequences using Markov chain order
of 3 and then implanted the known binding sites of the
same species into those sequences. Each known binding
site embedded in a sequence belongs to a specific tran-
scription factor in the TRANSFAC database [30]. We se-
lected different benchmark datasets so that each
sequence in a dataset contains at least one or more em-
bedded sequences of the same transcription factor.
These sequence datasets were used to run nineteen
motif finders [3, 29, 31–35] in Table 3 for generating the
motifs that were subsequently used in this assessment.
Some general characteristics of these tools can also be
found in Additional file 1: Table S1. In addition, we se-
lected 46 motifs from the TRANSFAC database. Each
selected motif has at least one or more closely structural
members of the same species in the database. The aim is
to measure the performances of USW, AKL, ALLR,
PCC, CS, and MOTIFSIM for identifying the known

motif among several similar motifs of the same species
in the TRANSFAC database. The performance of each
method is measured by using the number of motifs that
were correctly identified by each method for the same
set of datasets.
The data that were used in the first phase of the

assessment contain 158 motifs. They can be found in
Additional file 1: Table S2. The first one hundred and
four are on-line predicted motifs, which were generated
by thirteen tools in Tompa et al. [29]. Since thirteen
tools in [29] are older tools, we assessed six additional
newer tools in Table 3. Because nine sequence datasets
used by Tompa et al. to run older tools produced low
performance results in their study, we selected seven
additional sequence datasets to run the newer tools.
They are marked with asterisk (*) in Table 3. The object-
ive was to observe if a sequence dataset had any influ-
ence on the performance of each tool. The next eight
motifs in the collection came from five newer tools that
are ChIPMunk [31], DMINDA [32], MEME (v. 4.11.4)
[3], peak-motifs [33], and XXmotif [35]. We followed the
procedure suggested by Tompa et al. for selecting the
top three motifs for each sequence dataset and we calcu-
lated six statistics above for each motif. We used nCC
for selecting the best motif reported by each tool for
each sequence dataset. The following forty-six motifs in
the collection came from the TRANSFAC database. For
each motif in the collection, we performed pair-wise
comparisons with motifs of the same species in the
TRANSFAC database by using USW, AKL, ALLR, PCC,
CS, and MOTIFSIM. The second phase of the assessment

Table 2 Sixteen benchmark sequence datasets [29]. They are grouped by species. Each sequence dataset has an embedded
transcription factor

Sequence Dataset Dataset Type Species Transcription Factor Number of Sequences Sequence Length

hm01g Generic Homo sapiens AP-1 18 2000

hm04g Generic Homo sapiens c-Jun 13 2000

hm08m Markov Homo sapiens CREB 15 500

hm15g Generic Homo sapiens NF-1 4 2000

hm17g Generic Homo sapiens NF-kappaB 11 500

hm19g Generic Homo sapiens Sp1 5 500

hm22g Generic Homo sapiens USF1 6 500

hm22m Markov Homo sapiens USF1 6 500

mus04m Markov Mus musculus C/Ebalpha 7 1000

mus06g Generic Mus musculus GATA-1 3 500

mus10g Generic Mus musculus Sp1 13 1000

mus11m Markov Mus musculus Sp1 12 500

yst02g Generic Saccharomyces cerevisiae GAL04 4 500

yst03m Markov Saccharomyces cerevisiae GCN4 8 500

yst06g Generic Saccharomyces cerevisiae MCM1 7 500

yst09g Generic Saccharomyces cerevisiae CAR1 16 1000
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used four datasets containing the motifs selected from the
Jaspar database [28]. They can be found in Table 4. The
datasets came from four taxonomic groups namely Fungi,
Insects, Plants and Vertebrates. Each dataset comprises
motifs from different families. The goal was to cluster
them into a proper family, which they belong in the Jaspar
database. The details of each dataset can be found in
Additional file 1: Tables S3-S6.
Lastly, the data that were used in the third phase of

the assessment include 137 motifs. They can be found in
Additional file 1: Table S7. The first thirty-three are pre-
dicted motifs, which were generated by six newer tools.
The rest are predicted motifs generated by thirteen older
tools.

Results
Pair-wise motif comparison
We obtained the number of motifs that were correctly
identified by each method per sequence dataset for 112
predicted motifs in the collection. Subsequently, we cal-
culated the percentage of motifs that were correctly
identified by each method. MOTIFSIM attains 31% com-
paring to 22% for USW, 1% for AKL, 0% for ALLR, 0%
for PCC, and 15% for CS as shown in Table 5.

We repeated the calculations above but for the se-
lected motifs from the TRANSFAC database in the col-
lection. We also obtained the number of motifs that
were correctly identified by each method per species as
shown in Table 6. Again, we calculated the percentage of
motifs that were correctly identified by each method.
MOTIFSIM attains 98% comparing to 61% for USW,
100% for AKL, 100% for ALLR, 100% for PCC, and 85%
for CS. Although MOTIFSIM has a slightly lower per-
centage than AKL, ALLR, and PCC for this portion of
comparison, the average percentage for both compari-
sons demonstrates it has higher overall performance
than other methods. Specifically, MOTIFSIM attains
64.5% comparing to 41.5% for USW, 50.5% for AKL,
50% for ALLR, 50% for PCC, and 50% for CS as shown
in Table 7. In general, different methods exhibit various
performances on different datasets. However, the overall
results show MOTIFSIM outperforms other methods.

Motif clustering
To compare the performances of MOTIFSIM and Matrix-
clustering, we obtained the motif tree for the result gener-
ated by each tool for each dataset. We used the Phyloden-
dron tool to generate the motif trees for the results from
Matrix-clustering [36]. The trees are shown in Additional
file 1: Figures S1-S8. We calculated the percentage of mo-
tifs that were correctly classified into their family by each
tool per dataset. MOTIFSIM achieves 62% for Fungi and
57% for Insects datasets comparing to 58% and 55% re-
spectively from Matrix-clustering. For the Plants and Ver-
tebrates datasets, both tools achieve similar results of 97%
and 90% respectively. The comparison results are in
Table 8 and Fig. 1.

Table 4 Four datasets used in motif clustering comparisons.
The motifs in each dataset were selected from the Jaspar
database [28]

Dataset Number of Motifs Taxonomic Group

pfm_fungi 78 Fungi

pfm_insect 42 Insects

pfm_plant 65 Plants

pfm_vertebrate 73 Vertebrates

Table 5 Performance comparisons for USW, AKL, ALLR, PCC, CS, and MOTIFSIM for the predicted motifs in the collection. The
number of motifs that were correctly identified by each method per sequence dataset is listed. The percentage of motifs that were
correctly identified by each method per dataset was also calculated

Sequence
Dataset

Number of Motifs Correctly Identified % of Motifs Correctly Identified

USW AKL ALLR PCC CS MOTIFSIM Total # of Tools USW AKL ALLR PCC CS MOTIFSIM

hm08m 0 0 0 0 0 1 12 0% 0% 0% 0% 0% 8%

hm17g 2 0 0 0 3 2 5 40% 0% 0% 0% 60% 40%

hm22m 1 0 0 0 2 1 10 10% 0% 0% 0% 20% 10%

mus04m 0 0 0 0 0 2 12 0% 0% 0% 0% 0% 17%

mus06g 1 1 0 0 1 2 13 8% 8% 0% 0% 8% 15%

mus10g 3 0 0 0 0 5 11 27% 0% 0% 0% 0% 45%

mus11m 2 0 0 0 0 3 11 18% 0% 0% 0% 0% 27%

yst02g 6 0 0 0 7 6 11 55% 0% 0% 0% 64% 55%

yst03m 3 0 0 0 1 9 13 23% 0% 0% 0% 8% 69%

yst06g 5 0 0 0 2 3 11 45% 0% 0% 0% 18% 27%

yst09g 2 0 0 0 1 1 3 67% 0% 0% 0% 33% 33%

Total 25 1 0 0 17 35 112 22% 1% 0% 0% 15% 31%

Tran and Huang Biological Procedures Online           (2018) 20:23 Page 6 of 10



Significance of the global significant motif
We measured the performances of all tools including
MOTIFSIM by calculating six statistics presented above for
the best motif produced by each tool for the same sequence
dataset. Since the selected global significant motif from
MOTIFSIM came from one of the motif finders, its cor-
rectness can be measured by using six statistics above. The
results of different tools including MOTIFSIM for each se-
quence dataset are in Additional file 1: Figures S9-S24.
Additional file 1: Figures S9-S11 show the results for six
newer tools including MOTIFSIM for the sequence data-
sets hm01g, hm04g, and hm15g respectively. In Additional
file 1: Figure S9, the selected global significant motif from
MOTIFSIM came from peak-motifs. This tool has a better
performance than other tools. Additional file 1: Figures S10
and S11 show seven tools failed to identify the known
motif. However, Additional file 1: Figure S12 indicates all
five newer tools and MOTIFSIM successfully identified the
known motif for the sequence dataset hm17g. The selected
global significant motif from MOTIFSIM came from
peak-motifs. STEME was absent in this figure because it
did not report any significant motif. Additional file 1:
Figures S13-S15 show the results for three or four newer
tools including MOTIFSIM for the sequence datasets
hm19g, hm22g, and yst09g respectively. Other newer tools
were absent in these figures because they did not report any
significant motif. The results for older tools including
MOTIFSIM are shown in Additional file 1: Figures S16-S24.
In Additional file 1: Figure S16, the selected global significant
motif from MOTIFSIM came from YMF. This tool has a
better performance than some other tools. Generally, some

tools exhibit better performance than others for some se-
quence datasets. We calculated the average statistics for six
newer tools including MOTIFSIM. The result reveals
STEME has a poorer performance than other tools as shown
in Fig. 2. We also calculated the average statistics for thirteen
older tools including MOTIFSIM. The result in Fig. 3 indi-
cates Weeder, YMF, and Oligodyad-analysis attain better per-
formance than other tools. MOTIFSIM is in an intermediate
range comparing to Weeder and YMF. However, it achieves
better performance than ten other tools except for
Oligodyad-analysis, Weeder, and YMF.

Discussion
Using multiple tools for finding motifs is generally advised
because the motifs reported by multiple tools are more likely
to be biologically significant. In this assessment, the predicted
motif was not verified with the known motif for the objective
of measuring the performance of each tool. In general, the
results show that some tools have better performance than
others. Some tools show poor performance and some even
failed to identify the known motif. However, the observation
for Fig. 2 indicates the top two performers: peak-motifs and
DMINDA outperform other tools while MEME and STEME
exhibit lower performance than others with STEME is at the
lowest rank. Since each tool has its unique approach for de-
tecting the motifs, the method that each tool used generally
falls into one of the two common categories: profile-based
method and consensus-based method. We observed the type
of method that each tool is based on in Additional file 1:
Table S1. DMINDA is a graph-based method and
peak-motifs is a word-based method, which is a subcategory
of the consensus-based method. Both MEME and STEME
are profile-based methods. However, STEME exhibits a sig-
nificant lower performance than MEME, which can be
caused by its nature design and implementation although its
algorithm has similar properties to MEME [34]. In Fig. 3, the
top three performers are Weeder, YMF, and
Oligodyad-analysis. They outperform other tools while
AlignACE, MITRA, and GLAM are the bottom three
performers with GLAM is at the lowest rank. All top three
performers in this figure are consensus-based methods.
AlignACE and GLAM are profile-based methods. Although

Table 6 Performance comparisons for USW, AKL, ALLR, PCC, CS, and MOTIFSIM for the selected motifs from TRANSFAC database in
the collection. The number of motifs that were correctly identified by each method per species is listed. The percentage of motifs
that were correctly identified by each method per species was also calculated

Number of Motifs Correctly Identified % of Motifs Correctly Identified

Species USW AKL ALLR PCC CS MOTIFSIM Total # of Motifs by Species USW AKL ALLR PCC CS MOTIFSIM

Homo sapiens 11 19 19 19 17 19 19 58% 100% 100% 100% 89% 100%

Mus musculus 7 15 15 15 14 14 15 47% 100% 100% 100% 93% 93%

Saccharomyces cerevisiae 4 5 5 5 4 5 5 80% 100% 100% 100% 80% 100%

Drosophila melanogaster 6 7 7 7 4 7 7 86% 100% 100% 100% 57% 100%

Total 28 46 46 46 39 45 46 61% 100% 100% 100% 85% 98%

Table 7 Average percentage for the predicted motifs and the
selected motifs by each method. MOTIFSIM achieves higher
performance than other methods

% of Motifs Correctly Identified

Motif Category USW AKL ALLR PCC CS MOTIFSIM

Predicted motifs 22% 1% 0% 0% 15% 31%

Selected motifs
from TRANSFAC

61% 100% 100% 100% 85% 98%

Average percentage 41.5% 50.5% 50% 50% 50% 64.5%
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MITRA is a consensus-based method, it falls into the list of
three bottom performers. This can be explained by the na-
ture design and implementation of the tool. The profile-
based methods are faster than consensus-based methods but
they have lower accuracy than consensus-based methods be-
cause they tend to be trapped in a local optimum [37]. The
observations for Figs. 2 and 3 confirm this fact except for
MITRA.
Regardless of the poor performance, MOTIFSIM al-

ways reports the majority vote motif at the highest rank
of similarity score. When we observe the performances
of various tools on several sequence datasets, it shows
that MOTIFSIM is more reliable for identifying the mo-
tifs that are more trustworthy than those reported by the
poor performance tools. This is crucial particularly for
the de novo motif finders because they do not use the
reference database for verifying the found motifs. Thus,
it may not be reliable for obtaining the results from indi-
vidual de novo motif finders. The observation also indi-
cates that using multiple tools for finding motifs and
combining with MOTIFSIM for attaining the common

significant motifs, it improved the results for DNA motif
detection. This improvement is suitable for the general
motif detection. If the motif discovery involves finding a
specific type of motif by using a special tool, then using
different types of motif finders may not be useful and
MOTIFSIM is not recommended. On the other hand,
because MOTIFSIM is specialized for motif similarity
detection, the tool is useful for obtaining the common
significant motifs from the results generated by several
motif finders of the same type or by various motif
finders of different types for the general motif detection.
Besides, individual motif finders can be specialized for
targeting different types of motifs. Hence, the users
should select the most suitable method for their research
for obtaining the best possible result.

Conclusions
We compared the pair-wise comparison technique of
MOTIFSIM with USW, AKL, ALLR, PCC, and CS for
measuring similarity between DNA motifs. The com-
parison results show that MOTIFSIM achieves better

Table 8 Comparison results for Matrix-clustering and MOTIFSIM for four taxonomic datasets. The number of motifs that were
correctly classified and the percentage of correct classification by each tool for each dataset are shown. MOTIFSIM has a similar or
better performance than Matrix-clustering

Dataset Total
Number of Motifs

MOTIFSIM Matrix Clustering

# of Motifs Correctly
Clustered

% of Correct
Classification

# of Motifs Correctly
Clustered

% of Correct
Classification

Fungi 78 48 62% 45 58%

Insects 42 24 57% 23 55%

Plants 65 63 97% 63 97%

Vertebrates 73 66 90% 66 90%

Fig. 1 Performance comparison for MOTIFSIM and RSAT Matrix-clustering tool on four taxonomic datasets: Fungi, Insects, Plants, and Vertebrates.
MOTIFSIM has higher accurate percentages than Matrix-clustering for Fungi and Insects datasets. It achieves 62% for Fungi and 57% for Insects
datasets comparing to 58% and 55% respectively from Matrix-clustering. For Plants and Vertebrates datasets, both tools achieve similar accurate
percentages with 97% and 90% respectively
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performance than five methods above. We also com-
pared MOTIFSIM with Matrix-clustering tool for clus-
tering the motifs. The classification results on four
taxonomic datasets demonstrate MOTIFSIM attains
similar or better results than Matrix-clustering. Further-
more, we evaluated the performances of nineteen motif
finders and the reliability of MOTIFSIM for identifying
the common significant motifs. The comparison results
reveal that some motif finders achieve better perform-
ance than other tools. Some failed to identify the known

motif. However, when the motif detection does not re-
quire a special tool for finding a specific type of motif
then using multiple tools for finding motifs and com-
bining with MOTIFSIM for attaining the common
significant motifs, it improved the results for DNA
motif detection. Since individual motif finders can be
specialized for different types of motifs, it is advisable
to select the most suitable method for a particular
type of research in order to achieve the best possible
result.

Fig. 2 Average statistics for six newer motif finders (ChIPMunk, DMINDA, MEME v. 4.11.4, peak-motifs, STEME, XXmotif) and MOTIFSIM on
seven additional sequence datasets. The first four statistics at the bottom of the figure are nucleotide level statistics. The next two are
site level statistics. STEME shows lower performance than all other tools due to its nature design and implementation. MOTIFSIM has
better performance than MEME and STEME and it is in an intermediate range comparing to other tools

Fig. 3 Average statistics for thirteen older motif finders and MOTIFSIM on nine sequence datasets. The older tools and nine sequence
datasets were used by Tompa et al. in their study [29]. The first four statistics at the bottom of the figure are nucleotide level statistics.
The next two are site level statistics. MOTIFSIM attains better performance than ten other tools except for Oligodyad-analysis, Weeder,
and YMF
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