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Abstract

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus
disease 19 (COVID-19) that was emerged as a new member of coronaviruses since December 2019 in Wuhan, China
and then after was spread in all continentals. Since SARS-CoV-2 has shown about 77.5% similarity to SARS-CoV, the
transcriptome and immunological regulations of SARS-CoV-2 was expected to have high percentage of overlap
with SARS-CoV.

Results: In this study, we applied the single cell transcriptomics data of human bronchial epithelial cells (2B4 cell
line) infected with SARS-CoV, which was annotated in the Expression Atlas database to expand this data to COVID-
19. In addition, we employed system biology methods including gene ontology (GO) and Reactome pathway
analyses to define functional genes and pathways in the infected cells with SARS-CoV. The transcriptomics analysis
on the Expression Atlas database revealed that most genes from infected 2B4 cell line with SARS-CoV were
downregulated leading to immune system hyperactivation, induction of signaling pathways, and consequently a
cytokine storm. In addition, GO:0016192 (vesicle-mediated transport), GO:0006886 (intracellular protein transport),
and GO:0006888 (ER to Golgi vesicle-mediated transport) were shown as top three GOs in the ontology network of
infected cells with SARS-CoV. Meanwhile, R-HAS-6807070 (phosphatase and tensin homolog or PTEN regulation)
showed the highest association with other Reactome pathways in the network of infected cells with SARS-CoV.
PTEN plays a critical role in the activation of dendritic cells, B- and T-cells, and secretion of proinflammatory
cytokines, which cooperates with downregulated genes in the promotion of cytokine storm in the COVID-19
patients.

Conclusions: Based on the high similarity percentage of the transcriptome of SARS-CoV with SARS-CoV-2, the data
of immunological regulations, signaling pathways, and proinflammatory cytokines in SARS-CoV infection can be
expanded to COVID-19 to have a valid platform for future pharmaceutical and vaccine studies.
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Background
The transcriptome of living organisms including RNA
transcripts is studied by transcriptomics assays [1]. The
coding genes of organisms are present in the DNA,
which are transcribed to mRNA by transcription. Two
major techniques have widespread applications in the
transcriptomics analysis of cell mRNA pool: the first one
is microarray which is used for detection of a labeled
mRNA or surrogate marker by an immobilized probe [2]
and the second one is RNA-Seq which is a high-
throughput sequencing technique, capable to differenti-
ate various types of RNA including miRNA, tRNA, and
rRNA [3]. The outputs of RNA-Seq analysis can be vali-
dated by quantitative reverse transcription PCR (RT-
qPCR) as a complementary method in transcriptomics
[4]. Recently, the transcriptome of infected human tissue
samples was detected by analyzing the site of infection
[5] to elucidate the response of patients to external path-
ogens and understand the molecular regulatory mecha-
nisms of infections [6]. Two models, including cell lines
for in vitro and animal models for in vivo assays are
commonly considered for transcriptomics analysis of hu-
man responses to infectious agents [7]. In vitro and
in vivo cell lines/animals interactions with pathogens
and their host-specific responses to the pathogens can
be evaluated by transcriptomics techniques. The interac-
tions of the infected cell lines with immune system cel-
lular components can be through recognition with
specific T cells and natural killer (NK) cells as the cru-
cial factors of the adaptive and innate immunity and
reflected in the transcriptional responses [8–10]. In
addition, the patterns of gene expression as a biomarker
can be evaluated by transcriptomics techniques to dis-
criminate the different stages of the infections and may
influence physiological pathways.
Previously, transcriptome analyses of host-pathogen

interactions were conducted on the viral infections in-
cluding herpesvirus [11], cytomegalovirus [12, 13], influ-
enza virus [14], human respiratory syncytial virus [15],
measles virus [16], rubella virus [17], dengue virus [18],
rabies virus [17], ebolavirus [19, 20], and human im-
munodeficiency virus (HIV) [21]. Moreover, studding
the transcriptome of Calu-3 cell line (human lung cancer
cell line) after infection with severe acute respiratory
syndrome coronavirus (SARS-CoV) revealed that recog-
nition receptors and the interleukin 17 (IL-17) pathway
were activated [22]. In addition, another analysis was
performed on the transcriptome of Calu-3 cell line fol-
lowing Middle East respiratory syndrome coronavirus
(MERS-CoV) infection to identify suitable inhibitory and
antiviral compounds [23].
Since December 2019, SARS-CoV-2 was emerged as a

novel member of coronaviruses in Wuhan, China [24]
and soon after spread around the world [25, 26]. In a

study in 2005 that was performed on the prophylactic
and therapeutic supremacies of chloroquine, as an anti-
malaria agent, on primate cells infected with SARS-CoV,
it was defined that chloroquine increases the endosomal
pH and intervene with glycosylation of angiotensin-
converting enzyme 2 (ACE2) as the receptor of SARS-
CoV on the alveolar cell surface [27]. Although
chloroquine and hydroxychloroquine sulfate, as the anti-
malaria agents, were prescribed for treatment of
coronavirus disease 2019 (COVID-19) at the beginning
of pandemic [28], the ocular toxicity and cardiotoxicity
of chloroquine and hydroxychloroquine sulfate should
be considered [29, 30].
In a study performed by Wang C et al. in 2020, it was

defined that the spike (S) protein of Wuhan strain of
SARS-CoV-2 contains 1273 amino acid residues and the
S protein of Urbani strain of SARS-CoV includes 1255
amino acid residues that showed about 77.5% similarity
between the amino acid residues of S protein of both vi-
ruses. The study on the receptor binding domain (RBD)
of S protein from both SARS-CoV and SARS-CoV-2
by enzyme linked immunosorbent assay (ELISA) and
human 47D11 antibody revealed similar affinities of
the human 47D11 antibody to ACE2 receptor of host
cells through S1B domain of both SARS-CoV and
SARS-CoV-2. In this study, 25 human and non-
human cell lines from various organs and tissues were
inoculated with SARS-CoV and SARS-CoV-2 and fi-
nally similar tropism of both viruses to ACE2 recep-
tor was confirmed; meanwhile, they declared that the
observed differences could be due to different infec-
tion capacity in the target organs such lungs, kidneys,
and brain, resulting different cytopathic-effects in the
tested cell lines [31–33].
Since the recent emergence of SARS-CoV-2 and

considering its high transmission rate [34] which have
affected all aspects of human life including health and
economy [35, 36], it would be an urgent matter to
combat against it and find an effective vaccine and/or
potential therapeutics to treat COVID-19. Within this
context, we try to expand the transcriptomics data of
the interaction of lung cells with SARS-CoV to infec-
tion of bronchoalveolar cells with SARS-CoV-2. Due
to the high percentage of similarity between SARS-
CoV and SARS-CoV-2, this approach could be a
potential solution in the pharmaceutical studies to
explore an influential compound to treat COVID-19
efficiently. In this study and through the in silico and
system biology approaches, we checked the tran-
scriptomics data of infection of lung bronchial cells
with SARS-CoV and believe that the results can be
potentially expanded to infection of host lung bron-
chial epithelial cells with SARS-CoV-2 in COVID-19
patients.
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Methods
mRNA Microarray Assay
The microarray assay on the mRNAs from 2B4 cell line
(human bronchial epithelial cell) after infection with
SARS-CoV was performed using Affymetrix GeneChip
Human Genome U133 Plus 2.0 [HG-U133_Plus_2] by
Yoshikawa et al. in 2010 [37]. The transcriptomics data
of the infected 2B4 cell line was recorded for three dif-
ferent time durations including 12 h, 24 h, and 48 h post
infection with SARS-CoV and the analysis was adjusted
on p-value< 0.05 and Log2-fold change 1.0. This tran-
scription profile was annotated in the Expression Atlas
(https://www.ebi.ac.uk/gxa/home) hosted by EMBL-EBI
database [38].

Gene Ontology (GO) Analysis
The GO analysis was conducted to identify the function-
ality of altered 2B4 cell line genes after infection with
SARS-CoV. Through a computational approach, the
function of altered genes was predicted by both human-
and machine-readable data and the obtained results were
filtered by Fisher’s exact test [39], False Discovery Rate
(FDR)<1.0. This statistical significance removed the pro-
portion of false positives among all upregulated and
downregulated genes from 2B4 cell line genes after in-
fection with SARS-CoV.

Reactome Pathways Analysis
The Reactome pathways analysis was conducted to ex-
plore the biochemical and physiological pathways in the
infected 2B4 cell line with SARS-CoV. The same as GO
analysis, Fisher’s exact test [39] and FDR<1.0 was
employed to statistically identify the activated Reactome
pathways in the 2B4 cell line genes after infection with
SARS-CoV.

Results
mRNA Microarray Assay
The microarray mRNA analysis of the annotated data
in the Expression Atlas database [38] revealed that no
significant gene regulation occurs in the host cells
within 24 h. All genes related to the interaction of
2B4 cell line and SARS-CoV were expressed after 48
h, in which most of the affected genes were downreg-
ulated, while just REL (c-Rel proto-oncogene) gene
was upregulated (Fig. 1).
The microarray analysis on the expression of SARS-

CoV genes in all three different durations (12 h, 24 h,
and 48 h) of interaction with 2B4 cell line demonstrated
almost similar expression level of SARS-CoV genes be-
tween 7 h to 9 h after infection of 2B4 cell line (Fig. 2).

Gene Ontology (GO) Analysis
In this analysis, the top ten GO as a network were visu-
alized that their gene products were attributed to some
vital cellular functions of the infected 2B4 cell line with
SARS-CoV. Three out of ten GO including GO:0016192
(vesicle-mediated transport), GO:0006886 (intracellular
protein transport), and GO:0006888 (ER to Golgi
vesicle-mediated transport) displayed the highest associ-
ation in the GO network after infection of 2B4 cell line
with SARS-CoV (Fig. 3) (Table 1).

Reactome Pathways Analysis
In this analysis, the top ten Reactome pathways as a net-
work were visualized that showed a significant attribu-
tion in the biochemical and physiological pathways after
infection of 2B4 cell line with SARS-CoV. One out of
ten Reactome pathways including R-HAS-6807070
(phosphatase and tensin homolog or PTEN regulation)
showed the highest association with other Reactome
pathways in the network of infected 2B4 cell line with
SARS-CoV (Fig. 4) (Table 1).

Discussion
The study of literature demonstrated that the blood
transcriptome of the infected host with SARS-CoV
could be mined by reverse vaccinology and system
vaccinology technologies and consequently a potential
vaccine candidate could be designed through the pro-
duction of recombinant proteins against COVID-19
[40]. The exploration of pathogenesis mechanisms of
SARS-CoV infection can provide more detailed infor-
mation to design drugs against COVID-19 through
the regulation of immune response [41]. The tran-
scriptomic gene expression profiles of Yellow Fever
vaccine 17D (YF-17D) were analyzed by a GO system
named Vaccine Investigation Ontology (VIO) to iden-
tify the association of various variables in the vacci-
nated population. Hence, not only GO analysis has a
potential application in the microarray assay after in-
fection and/or vaccination to detect the profiles of
gene expression, but also the Reactome analysis
pathway tools are employed to explore the enriched
pathways after infection and/or vaccination [42].
Therefore, the p-value based on FDR < 0.05 as the sig-
nificance cut-offs was applied in the GO analysis and
Reactome pathway enrichment pathways in the evalu-
ation of transcriptomic gene expression profiles by
microarray assay in SARS-CoV infection, which has a
potential to be expanded to CIVID-19.
In a study performed by Mizutani et al. in 2005, the

in vitro and in vivo signaling pathways in SARS-CoV in-
fection were illustrated [43]. In response to stressors,
p38 mitogen-activated protein kinase (MAPK) is
expressed so two isoforms of MAPK including p38α and
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p38β are expressed in all tissues, while the expression of
other two isoforms including p38γ and p38δ is tissue-
specific so the inhibition of p38α and/or p38β MAPKs
in SARS-CoV infection would be occurred by SB203580
inhibitor. In addition, the interaction between MAPK
kinase 6 (MKK6) and protein kinase R (PKR) activates
p38 MAPK [44]. The activation of PKR is done by
MKK6 through double-stranded RNA, while the activa-
tion of MKK6 is done by PKR through poly(rI;rC).
Apoptosis signal-regulatory kinase (ASK1), transforming
growth factor (TGF)-β-activating kinase (TAK1), and
MAPKKK4 were categorized as the upstream targets of
p38MAPK [45], while MAP kinase-interacting kinase 1
(MNK1), mitogen and stress-activated protein kinase 1
(MSK1), and MAPK-activated protein kinase 2 and 3
(MAPKAPK 2 and 3) were known as the downstream
targets of p38MAPK [46]. On the other hand, the 7a

protein from SARS-CoV induces phosphorylation and
apoptosis of p38 MAPK in 293 T cells [47], while the in-
duction of p38 MAPK pathway induces actin
reorganization in COS-1 cells leading to devoid of
growth factors [48].
The microarray analysis on the infected 2B4 cell line

with SARS-CoV was performed by Yoshikawa et al in
2010 [37]. The results of this study revealed that REL
gene was upregulated. REL is a member of nuclear
factor-κB (NF-κB) family of transcription factors. It was
defined that the pathogenesis of SARS-CoV is associated
with stimulated induction of proinflammatory cytokines
by activation of at least five pathways including NF-κB,
NF-AT, IRF-3, IRF-7, ATF-2/jun, and jun/fos (AP-1)
[49]. Similarly in COVID-19, it can be expected that the
activation of REL gene can lead to cytokine storm in the
infected lung with SARS-CoV-2. Cytokine storm is an

Fig. 1 Expression variations of cellular genes after SARS-CoV infection. The 2B4 cell line was infected with SARS-CoV and following 48 h
incubation the gene expression was analyzed by microarray method. Most of the affected genes showed slight downregulation. Colors
indication: dark red for low level upregulation, dark green for low level downregulation, and light green for high level downregulation. The
analysis was adjusted on p-value< 0.05 and Log2-fold change 1.0
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uncontrolled systemic inflammatory response that may
lead to multi-organ failure and death in COVID-19.
Downregulation of peroxiredoxin 5 (PRDX5) gene

levels by SARS-CoV infection in the 2B4 cell line re-
duces the intracellular hydrogen peroxide (H2O2) levels
to minimize oxidative stress in the infected cells [50].
The expression of matrix metalloproteinase 1 (MMP1)
gene was downregulated in SARS-CoV infection, while

MMP1 gene is overexpressed in influenza H7N9, which
may lead to deposition of collagen in lungs and conse-
quently gas exchange problem due to fibrosis [51, 52].
Therefore, it seems that the occurrence mechanism of
acute respiratory distress syndrome (ARDS) in COVID-
19 and influenza infection is initiated by two different
mechanisms. Neurofilament triplet L protein (NEFL)
gene can be downregulated in the SARS-CoV infection,

Fig. 3 Enrichment of top ten gene ontology (GO) after infection of 2B4 cell line with SARS-CoV. The GO analysis shows the top ten cellular genes
are regulated after SARS-CoV infection

Fig. 2 Boxplots show the array intensity distributions of SARS-CoV genes. The outlier computation method between the distribution of the
pooled data and each array’s distribution derived from Kolmogorov-Smirnov statistic Ka. Asterisks indicate inaccurate results in the experiments.
Purple bars show the expression level of SARS-CoV genes after 12 h, orange bars show the expression level of SARS-CoV genes after 24 h, and
yellow bars show the expression level of SARS-CoV genes after 48 h. All three experiments demonstrate that SARS-CoV genes are expressed
between 7 h and 9 h post infection of alveolar cells
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while NEFL gene is upregulated in Zika virus infected
cells [53]. Another downregulated gene in the SARS-
CoV infection is nitric oxide synthase traffic inducer
(NOSTRIN) so this downregulation can induce the se-
cretion of some proinflammatory chemokines and cyto-
kines including CCL2, CCL5, and IL-6 [54]. This is in
controversy with the high secretion of IL-6 in COVID-
19 which is an initiator mechanism for C-reactive

protein (CRP) production and cytokine storm [55]. An-
other study showed that phenylalanine hydroxylase
(PAH) gene was downregulated in SARS-CoV infection
leading to activation of immune system through upregu-
lation of T helper 1 (Th1) responses [56]. Notably, the
cytokine storm is usually amplified by activation and se-
cretion of cytokines from Th1 lymphocytes [57]. Lower
expression of BCL2 Interacting Protein 3 like (BNIP3L)

Fig. 4 Enrichment of top ten Reactome pathways after infection of 2B4 cell line with SARS-CoV. The Reactome pathways show the top ten
cellular pathways and networks are enriched after SARS-CoV infection

Table 1 The top ten GO analysis and Reactome pathways after infection of 2B4 cell line with SARS-CoV

Top
10

GO analysis Reactome enrichment pathways

1 GO:0005769 (early endosome) R-HAS-9612973 (autophagy)

2 GO:0019904 (protein domain specific
binding)

R-HAS-6807070 (PTEN regulation)

3 GO:0016192 (vesicle-mediated transport) R-HAS-5607764 (CLEC7A or Dectin-1 signaling)

4 GO:0010008 (endosome membrane) R-HAS-163200 (respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat
production by uncoupling proteins)

5 GO:0045121 (membrane raft) R-HAS-4086400 (PCP/CE pathway)

6 GO:0006888 (ER to Golgi vesicle-mediated
transport)

R-HAS-428157 (sphingolipid metabolism)

7 GO:0005085 (guanyl-nucleotide exchange
factor activity)

R-HAS-156827 (L13a-mediated translational silencing of Ceruloplasmin expression)

8 GO:0006413 (translational initiation) R-HAS-72706 (GTP hydrolysis and joining of the 60S ribosomal subunit)

9 GO:0006886 (intracellular protein
transport)

R-HAS-179419 (APC:Cdc20-mediated degradation of cell cycle proteins prior to satisfaction of the
cell cycle checkpoint)

10 GO:0071013 (catalytic step 2 spliceosome) R-HAS-72613 (eukaryotic translation initiation)
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gene was experienced in SARS-CoV infection, while
downregulation of this gene was associated with a reduc-
tion of NK cell memory and their response to cyto-
megalovirus infection [58]. Dual specificity protein
phosphatase 4 (DUSP4) gene was downregulated in
SARS-CoV infection with the association with the skew
of Th1 toward Th2 immune response leading to suscep-
tibility to viral infections and inflammation, however,
may control the occurrence of cytokine storm by IL-6,
IL-12 and tumor necrosis factor α (TNFα) as well as
increasing the amount of prostaglandin PGE2 [59]. An-
other study showed that the coding gene for hydroxyste-
roid 17-beta dehydrogenase 2 (HSD17B2) was
downregulated in SARS-CoV infection, which is a conse-
quence of stimulation of IL-1, IL-6, and TNFα as well as
induction of inflammation. On the other hand, the cod-
ing gene for Musashi-2 (MSI2) RNA-binding protein
was downregulated in SARS-CoV infection. The loss of
function of MSI2 gene affects hematopoietic cells and
consequently the development of leukocytes leading to
suppression of the innate immune responses to infec-
tions [60, 61]. In SARS-CoV infection, the downregula-
tion of N-myc downstream-regulated 1 (NDRG1) gene
was led to induction of the proinflammatory signals and
activation of a cytokine storm with C-C Motif Chemo-
kine Ligand such as CCL2, CCL5, CCL23, CCL26, C-X-
C Motif Chemokine Ligands such CXCL10, CXCL11,
CXCL16, Vav Guanine Nucleotide Exchange Factor 3
(VAV3), signal transducer and activator of transcription
1 (STAT1), and SHC-transforming protein 3 (SHC3)
[62]. In addition to aforementioned genes, the coding
gene for transmembrane emp24 domain-containing
protein 4 (TMED4) was downregulated in SARS-CoV in-
fection. TMED4 can interact with interleukin-1
receptor-like 1 so the production of proinflammatory
cytokines including IL-6 and IL-8 was induced [63]. An-
other downregulated gene in the SARS-CoV infection
was transmembrane protein 184A (TMEM184A), which
was necessary for heparin responses in endothelial cells
and vascular smooth muscle cells with interruption ef-
fect on the anti-inflammatory responses of endothelial
cells to heparin [64]. The reduction in the production
level of taurine and induction of inflammatory responses
was experienced by downregulation of nebulin (NEB)
gene in SARS-CoV infection [65]. In addition, mitogen-
activated protein kinase (MAPK) signaling pathway was
activated after downregulation of HCG11 gene leading
to increased production of inflammatory cytokines [66].
Another downregulated gene was cysteine synthase
(CYS1). Previous studies have shown that the presence
of some amino acids such as cysteine are essential for
the optimization of immune system and immunomodu-
latory properties including regulation of proinflamma-
tory cytokines and T-cell proliferation, so the presence

of cysteine-rich proteins in the diet can improve the
function of immune system during the infections. CYS1
downregulation can be led to the activation of NF-κB,
stimulation of macrophages, and cytokine storm by over
production of IL-6 and TNF-α [67, 68]. Moreover, an as-
sociation was reported between the downregulation of
glutamine and serine-rich protein 1 (QSER1) and bro-
modomain containing 1 (BRD1) genes, which conse-
quently induce the infiltration of B-cells and activate
humoral immune responses [69]. The results obtained
from mRNA microarray assay [37] revealed that the
most downregulated genes in the infected bronchial epi-
thelial cells with SARS-CoV induce signaling pathways
and interleukin-producing cells toward an overactivation
of immune system leading to cytokine storm, which the
mentioned outcomes can be expanded to COVID-19 as
well.
GO analysis defined top three GOs including GO:

0016192, GO:0006886, and GO:0006888, which are
intermediate transportation forms for exocytosis of as-
sembled SARS-CoV proteins by smooth-wall vesicles to
plasma membrane [70], intracellular transportation of 3a
protein from SARS-CoV with the significant role of
YXXΦ motif [71], and cycling S protein through the
endoplasmic reticulum (ER)-Golgi system [72]; respect-
ively. Due to similar proteins of SARS-CoV and SARS-
CoV-2, the results of GO analysis from SARS-CoV can
be expanded to COVID-19 as well.
The Reactome pathway analysis revealed that PTEN

homolog plays a crucial role in the SARS-CoV infection
through activation of dendritic cells, production of
hyperactive B-cells and uncontrolled T-cells, and secre-
tion of proinflammatory cytokines including interferons
(IFNs), TNF-α, IL-10, IL-4, and granulocyte monocyte-
colony stimulating factor (GM-CSF) [73]. Therefore,
similar to SARS-CoV infection, PTEN Reactome path-
way can regulate several Reactome pathways and im-
mune responses in COVID-19.

Conclusions
Based on the high percentage of similarity of SARS-CoV
and SARS-CoV-2, the results of many former studies on
SARS-CoV can be expanded to SARS-CoV-2 to acceler-
ate the pharmaceutical and vaccine explorations against
COVID-19. Study on the single cell transcriptomics of
infected bronchial epithelial cells with SARS-CoV
demonstrates several immunity regulation factors and
pathways that can be expanded to SARS-CoV-2
immunological pathogenesis and capable to lead a cyto-
kine storm in the COVID-19 patients. As the overall
conclusion, the transcriptomics data from SARS-CoV
infection has the potential to be a golden pattern in the
future pharmaceutical and vaccine studies against
COVID-19.
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