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Abstract 

Background  Hepatocellular carcinoma (HCC) is a prevalent malignancy worldwide, characterized by its high malig-
nancy and poor prognosis. Telomeres, crucial components of eukaryotic chromosomes, have been increasingly recog-
nized for their involvement in tumorigenesis, development, and impact on the prognosis of cancer patients. However, 
the precise role of telomere-associated genes in HCC remains incompletely elucidated.

Methods  The Cancer Genome Atlas (TCGA) database was utilized to download data from 374 HCC and 50 normal 
liver tissue samples. Differential genes were screened and intersected with 2093 telomere-related genes (TRGs) 
in GeneCards, resulting in the identification of 704 TRGs exhibiting survival differences. Through univariate Cox 
regression analysis, multivariate Cox regression analysis, and LASSO regression, a prognostic model consisting of 18 
TRGs for HCC risk assessment was developed. The single-cell and spatial transcriptomics were utilized to analyze 
the expression and distribution of 18 TRGs in HCC. Subsequently, Mendelian randomization (MR) analysis confirmed 
a causal relationship between ASF1A and alcoholic HCC among the identified 18 TRGs. The expression and functional 
significance of ASF1A in HCC cell lines were investigated through colony formation assays, Transwell migration assays, 
and wound healing experiments.

Results  We developed a prognostic risk model for HCC incorporating 18 TRGs. Kaplan–Meier analysis demonstrated 
that the overall survival (OS) rate of the high-risk group was significantly inferior to that of the low-risk group. Cox 
regression analysis identified age (HR = 1.017, 95% CI: 1.002–1.032, P = 0.03), stage (HR = 1.389, 95% CI: 1.111–1.737, 
P = 0.004), and risk score (HR = 5.097, 95% CI: 3.273–7.936, P < 0.001) as three independent risk factors for HCC patients. 
The five-year receiver operating characteristic curve (ROC) and multivariate Cox regression analysis further validated 
the accuracy of our model. Time-dependent ROC results revealed that the 1-year, 3-year, and 5-year AUC values were 
AUC = 0.801, AUC = 0.734, and AUC = 0.690, respectively. The expression and distribution of 18 TRGs in HCC were 
further validated through single-cell and spatial transcriptomics data. Additionally, immune subtype analysis indi-
cated a significantly lower proportion of C3 and C4 subtypes in the high-risk TRG group compared to the low-risk 
group. Meanwhile, tumor immune dysfunction and exclusion (TIDE) were significantly higher in the high-risk group 
than in the low-risk group. Furthermore, we observed differences in IC50 values among nine chemotherapeutic 
drugs across different TRG risk subtypes which partially confirmed our model’s predictive efficacy for immunotherapy. 
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Amongst these eighteen TRGs analyzed by MR analysis, ASF1A was found to be associated with alcoholic HCC patho-
genesis. We further confirmed ASF1A was significant overexpression in HCC by Western blotting. We also explored it’s 
the carcinogenic role of ASF1A in HCC via the transwell, wound healing, and clone formation experiments.

Conclusion  In this study, we developed a novel prognostic model comprising 18 TRGs for HCC, which exhibited 
remarkable accuracy in predicting HCC patients’ prognosis. Additionally, through MR analysis, we have successfully 
established a causal relationship between ASF1A and alcoholic HCC for the first time, which also provided a new theo-
retical foundation for the management of alcoholic HCC.

Keywords  HCC, TRGs, Prognostic signature model, Immune infiltration, MR

Introduction
Hepatocellular carcinoma (HCC), which accounts for 
more than 75% of incidence of liver cancer worldwide, 
has received the majority of attention in the global public 
health concern [1, 2]. The pathogenesis of HCC is intri-
cate and involves significant risk factors such as hepatitis 
viruses and alcohol consumption [3, 4]. Moreover, aber-
rant expression or mutations in various genes have been 
closely associated with the initiation and progression of 
HCC. However, studies investigating telomere-related 
genes (TRGs) remain relatively scarce.

Telomeres, repetitive sequences of nucleotides (TTA​
GGG​), are located at the ends of eukaryotic chromo-
somes and play a crucial role in determining cell lifespan 
and division capacity. In normal human cells, telomere 
length gradually decreases with each cell division [5]. 
Telomere shortening is directly associated with various 
diseases, including tumorigenesis [6, 7]. However, the 
significance of telomere shortening in tumors remains 
controversial as it may inhibit tumor formation and pro-
gression by impeding cell proliferation but can also lead 
to widespread genomic instability, increasing the risk of 
tumorigenesis [8–10]. Studies have shown that variations 
in telomere structure were correlated with the develop-
ment of ovarian, prostate, breast colorectal, and lung 
cancers [11]. Furthermore, shortened telomeres elevated 
the risk of breast and pancreatic cancer development [12, 
13]. However, previous studies have primarily focused on 
the role of telomere length and stability in tumor progno-
sis, with a limited investigation into the impact of TRGs 
in HCC [14, 15].

In this study, we aimed to establish a groundbreaking 
risk model for telomere-related genes to predict progno-
sis in HCC, while also assessing its potential implications 
in tumor immune escape and therapeutic drug selection. 
Furthermore, through MR analysis, we provided com-
pelling evidence that supporting a causal relationship 
between the ASF1A and alcoholic HCC. Additionally, we 
validated the expression of ASF1A in HCC and elucidated 
its pivotal role. Therefore, we identified novel prognostic 
markers for HCC, progressed the study of TRGs in HCC, 
and offered new insights into early diagnosis, treatment 

strategies optimization, as well as improved prognosis 
management of HCC.

Materials and methods
Data acquisition and screening of TRGs
The flowchart of this study was illustrated in Supplemen-
tary Fig. 1. We obtained data on 374 HCC patients and 
50 normal liver tissue samples from the TCGA database 
[16], which included clinical information and raw tran-
scriptome expression data (https://​portal.​gdc.​cancer.​
gov/​repos​itory). From GeneCards (https://​www.​genec​
ards.​org/) [17], we retrieved a total of 2093 TRGs (Sup-
plementary Table  1). By intersecting these TRGs with 
differentially expressed genes identified between tumor 
and normal groups in the TCGA dataset, we identified 
949 TRGs that were differentially expressed in tumors. 
Finally, through univariate COX regression analysis, we 
further narrowed down to 704 TRGs that exhibited sur-
vival differences among HCC patients (Supplementary 
Table 2).

Construction and validation of the prognostic model 
for TRGs
Using the LASSO regression method, we applied a pen-
alty coefficient proportional to the shrinkage of the 
regression coefficient to construct a prognostic risk 
model for HCC using 704 differentially expressed TRGs. 
This approach enabled us to identify TRGs with prog-
nostic value. Based on this methodology, we developed 
an HCC risk prognostic model consisting of 18 TRGs 
(Supplementary Table 3). The TCGA training group and 
GSE14520 patients were categorized into low-risk and 
high-risk subgroups based on the median risk score. 
Kaplan–Meier survival analysis was conducted to com-
pare OS between different risk subtypes. Additionally, 
univariate Cox analysis, multivariate Cox analysis, and 
ROC curve analysis were performed to evaluate the 
specificity and sensitivity of our model in predicting sur-
vival outcomes for HCC patients. To assess whether our 
prognostic model can serve as an independent predictor 

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://www.genecards.org/
https://www.genecards.org/
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of OS in HCC patients, we utilized a nomogram. Finally, 
we represented the predicted value of the histogram as a 
ROC using the R package “timeROC”.

Acquisition and analysis of single‑cell data
This study incorporated single-cell transcriptome data 
from GSE146115 (encompassing 16 samples from 4 liver 
cancer patients)and GSE179795 (consisting of 24 liver 
cancer samples), and analyzed these single-cell tran-
scriptome data using the R package ‘Seurat (v4.3.0)’. To 
ensure the quality of the data, we performed data filter-
ing using CreateSeuratObject: min.cells = 3, min. fea-
tures = 200. Utilizing the “harmony” R package to address 
batch effects in cancer and adjacent tissue samples, fol-
lowed by normalization of single-cell RNA sequencing 
data using the “Seurat” R package to identify highly vari-
able genes and reduce data dimensions through principal 
component analysis. Utilize the “FindAllMarkers” func-
tion from the “scran” R package for identification of genes 
exhibiting specific differential expression, and manually 
annotate cell subclusters using the Cellmarker database. 
The Harmony algorithm was employed to correct batch 
effects, uniform manifold approximation and projection 
(UMAP) was utilized for reducing dimensionality, and 
KNN clustering was applied to choose cell subclusters. 
Subsequently, the AUCell algorithm assessed the scores 
of telomere-related genes across various annotated cell 
types in HCC.

Trajectory analysis
Following the utilization of the “Monocle3” R package 
for trajectory analysis, the study examined the trajectory 
patterns of particular cell clusters. This approach can 
demonstrate alterations in gene expression and precisely 
pinpoint genes that are under regulation throughout the 
complete duration of the trajectory.

Concurrent investigation of single‑cell and spatial 
transcriptomics
We acquired spatial transcriptomic data for HCC from 
the Mendeley Data repository and conducted data 
retrieval, standardization, dimensionality reduction, clus-
ter analysis, and identification of highly variable genes. 
SPOTlight(v1.6.7) integrates data from single-cell and 
spatial transcriptomics (ST) to discern the cellular com-
position and distribution within each designated area.

By utilizing the logNormCounts function, we standard-
ized the gene expression data for individual cells and sub-
sequently developed a genetic variation model to identify 
genes exhibiting high variability. Following this, we iden-
tified 3,000 genes with significant variation for further 
analysis. Subsequently, non-ribosomal and non-mito-
chondrial genes were filtered out and their marker scores 

were computed. After rigorous screening and sorting, 
only marker genes with an average AUC value exceeding 
0.7 were retained and organized into a structured data-
set. Finally, by integrating spatial transcriptomics data, 
cell types were inferred.

Analysis of immune cell infiltration levels and immune 
subtypes
The CIBERSORT algorithm was employed to assess the 
infiltration of immune cell populations, including CD4+ 
T cells, CD8+ T cells, B cells, and macrophages within 
the tumor microenvironment of HCC [18]. Further-
more, we investigated the correlation between immune 
cell infiltration levels and their respective frequencies. 
Immune subtypes of HCC patients in the TCGA data-
base were obtained using the TCGAbiolinks package in R 
language. Additionally, online tools were utilized to cal-
culate the disparity in TIDE scores between high-risk and 
low-risk groups based on TRGs (p < 0.001). Moreover, we 
explored the association between the TIDE score and the 
TRGs risk score.

Potential relationship between TRGs and multiple targeted 
therapeutic agents
We further investigated the role of TRGs in the response 
to drug therapy for HCC. By analyzing the correlation 
between the TRGs expression levels and the median 
inhibitory concentration (IC50) of targeted therapeutic 
drugs used in HCC patients, we aimed to gain deeper 
insights into the predictive role of TRGs in HCC drug 
therapy response. Additionally, we utilized the oncoPre-
dict package in R language for further analysis.

MR analysis of causative TRGs in alcoholic HCC
MR approach is an emerging analytical method that 
utilizes genetic variants as instrumental variables (IVs) 
to evaluate the causal effects of modifiable exposures 
on outcomes [19]. Initially, data were obtained from a 
genome-wide association study (GWAS), with a signifi-
cance threshold of p < 5*e-08, to screen for single nucle-
otide polymorphisms (SNPs) strongly associated with 
alcoholic HCC. Subsequently, multivariate testing was 
conducted using both the MR-Egger and inverse vari-
ance-weighted IVW methods. A p-value greater than 
0.05 indicated horizontal multivariate validity. Hetero-
geneity was assessed using Cochran’s Q statistic, and a 
Q-value above 0.05 suggested no heterogeneity among 
studies included in the analysis. The statistical tests were 
performed using the Mendelian Randomization package.

Cell culture and low expression vector transfection
The normal hepatocyte cell line LO2 and HCC cell lines 
97H, LM3, Hep G2, and 7721 were cultured in DMEM 
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medium supplemented with 10% fetal bovine serum 
(Eisentec), 100 u/ml penicillin, and 100 ug/ml strepto-
mycin (Solarbio). The cells were incubated at 37  °C in a 
CO2 incubator. The medium was changed every other 
day. The cells were divided into the vector group and the 
ASF1A knockdown group. ASF1A vector was purchased 
from Wuhan Sanying Biotechnology Co. For knockdown 
experiments, a total of 2.5ug knockdown da vector and 
5 μl Lipofectamine 3000 (Invitrogen, USA) were diluted 
with 125 μl Opti-MEM.

MTT experiment
Transfected Hep G2 and 7721 cells were seeded into 
96-well plates containing 100 μL of cell suspension (5000 
cells per well) and incubated for 3  days. MTT solution 
(20μL per well) was added, followed by a further incuba-
tion period of 4 h. Subsequently, an additional volume of 
150 μL DMSO was introduced to each well, and the wells 
were vigorously shaken for 10  min. Optical density val-
ues at a wavelength of 450 nm were measured using an 
enzyme marker (Thermo Fisher).

Wound scratch test
The Hep G2 and 7721 cells were cultured in 12-well 
plates and manually induced to form wounds by scratch-
ing. The rate of wound healing or cell migration was 
assessed by measuring the area devoid of cells at 0 and 
24 h, respectively.

Colony formation experiment
The HCC cells (1000 per well) were inoculated into 6-well 
plates. After 7 days of culture, the cells were stained with 
a solution of 0.1% crystal violet. Cell clones containing 
more than 50 cells were observed and quantified manu-
ally using a light microscope.

Transwell migration experiment
We assessed HCC cell migration using the Transwell 
method, where 3 × 10*4 cells were placed in the upper 
chamber with a serum-free medium. Serum medium was 
added to the lower chamber and incubated at 37  °C for 
24  h. Afterward, non-invasive cells on top of the mem-
brane were washed away, while migrating cells were fixed 
with 4% paraformaldehyde and stained with 0.1% crystal 
violet. The total cell count was determined under a light 
microscope.

Western blot experiment
Cells were lysed in cell lysis buffer and their protein 
concentration was determined using the BCA kit. Sub-
sequently, samples were loaded onto a sodium dodecyl 
sulfate–polyacrylamide gel and electrophoretically trans-
ferred to a PVDF membrane. The PVDF membranes 

were blocked with 5% skimmed milk for 1 h, followed by 
overnight incubation at 4 °C with primary antibody. After 
washing three times with Tris-buffered saline contain-
ing Tween (TBST) for 10 min each time, the membranes 
were incubated with HRP-labeled secondary antibody at 
room temperature for 1 h. Finally, the membranes were 
visualized using Clarity Western ECL reagent and radio-
graphic autoradiographic film exposure. Antibodies used 
included ASF1A (11224-1-AP; Protein tech, Wuhan, 
China; dilution, 1:400) and Tubulin (11224-1-AP; Protein 
tech, Wuhan, China; dilution, 1:200).

Statistical analysis
The statistical analyses were performed using the R soft-
ware package. TRG risk scores were identified as inde-
pendent prognostic factors for HCC through univariate 
Cox regression analysis. Differences in OS between dif-
ferent risk subtype groups were compared using Kaplan–
Meier analysis, and ROC curves were utilized to evaluate 
the prognostic value of risk scores with the assistance 
of the R package. Statistical significance was defined as 
p-values < 0.05.

Results
Identification of TRGs in HCC
Based on the TCGA database, we performed a com-
prehensive analysis using 374 HCC samples and 50 
paracancerous tissue samples. Through the utilization 
of PCA, we investigated the distribution of differen-
tial genes between tumor and non-tumor groups. Our 
findings demonstrated distinct distributions of these 
genes in both groups (Fig.  1A), indicating that PCA is 
an effective method for distinguishing between tumor 
and non-tumor groups. Subsequently, we intersected 
these differential genes with 2093 telomere-associated 
genes and identified those exhibiting significant differ-
ences in expression between HCC and normal liver tis-
sues (FDR < 0.05, |log2 FC|> 1.5). This analysis yielded a 
total of 935 up-regulated genes and 14 down-regulated 
genes. A heat map displaying the top 100 differentially 
expressed genes was generated (Fig. 1B). Furthermore, a 
one-way Cox analysis was conducted to explore the prog-
nostic significance of these telomere-associated genes, 
resulting in the identification of 704 survival-related 
TRGs (Fig.  1C). To enhance their prognostic value, 
LASSO regression analysis was employed to identify the 
most informative predictive markers among these dif-
ferential genes. Based on an optimal penalty parameter 
value λ, we selected a subset of 18 telomere-associated 
genes for model construction (Fig. 1D). Finally, utilizing 
scores derived from these selected TRGs with non-zero 
coefficients, a risk score model was developed (Fig. 1E). 
Risk score = Risk score = (-0.0288* ACADS) + (0.1574* 
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MMP1) + (-0.0078* ACAT1) + (0.0344 *ACOT7) + (-0.0623* 
ACSL6) + ( 0.0744* AGPAT5) + (0.0283* FLAD1.) + (0.0214* 
PDSS1.) + (0.2112* HSPD1.) + (0.0317 * FKBP1A) + (0.0162 
*AKR1B10) + (-0.0879* PDE2A) + (0.0605 *HDAC1) + (0.0482 
*HDAC2) + (0.2339 *MAPT) + (-0.0611 *PON1).

Prognostic risk modeling to assess clinical characteristics 
of HCC patients
To investigate the independent prognostic potential of 
the risk score, we initially examined the expression lev-
els of 18 model genes in HCC and adjacent tissues. The 
results depicted in Fig. 2A illustrated a significant upreg-
ulation of these 18 genes in HCC tumor samples com-
pared to adjacent tissues (p < 0.01). Subsequently, based 
on the median risk score, patients from the TCGA HCC 
training set were categorized into high-risk and low-risk 
groups, each consisting of 185 individuals. Kaplan–Meier 
analysis revealed that within the TCGA cohort, patients 
classified as low-risk exhibited significantly better OS 

than those classified as high-risk (p < 0.001) (Fig.  2B). 
Subsequently, the test group GSE14520 was divided into 
high-risk (n = 89) and low-risk (n = 139) groups according 
to their respective RS values obtained from the training 
set. Kaplan–Meier survival curves generated for this test 
group demonstrated a significantly longer predicted sur-
vival time for individuals assigned to the low-risk group 
compared to those in the high-risk group (p < 0001) 
(Fig.  2C). Univariate Cox regression analysis of TCGA 
training group identified Age (HR = 1.017, 95% CI:1.002–
1.032, p = 0.03), stage (HR = 1.389, 95% CI:1.111–1.737, 
p = 0.004), and risk score (HR = 5 0.097,95%CI:3 0.273 
-7 0.936, p < 0 0.001) as three independent prognostic 
factors for HCC patients (Fig. 2D). The feasibility of the 
risk score as a prognostic factor was further explored 
through multivariate Cox regression analysis. The results 
demonstrated that the TRGs risk score, could serve as 
an independent prognostic factor for patients with HCC 
(HR = 4.888, 95% CI: 3.324–7.188, p < 0.001, Fig.  2E). In 

Fig. 1  The construction of a risk-prognosis model associated with telomeres in a HCC cohort. A PCA comparing TCGA HCC tumor and non-tumor 
groups. B Heatmap displaying the top 100 differentially expressed TRGs in HCC. C Volcano plot highlighting prognostically significant differentially 
expressed TRGs in HCC. D Determination of the optimal parameter (λ) through LASSO regression analysis. E Spectrum of LASSO regression 
coefficients for 18 telomeric-associated genes
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addition, we re-selected a set of GEO datasets and chose 
GSE76427 as the test group for univariate and multi-
variate Cox regression analysis. Univariate Cox regres-
sion analysis showed that the risk score was significantly 
associated with the prognosis of HCC patients (HR: 
16.153, 95% CI: 1.442–180.908, p = 0.024, Supplementary 
Fig.  2A). Multivariate Cox regression analysis revealed 
that the risk score was an independent prognostic fac-
tor for patients with HCC (HR: 20.003, 95% CI: 1.441–
277.728, p = 0.026, Supplementary Fig. 2B). Furthermore, 
the time-dependent ROC at five years was constructed 
to evaluate the relationship between the telomere-asso-
ciated risk model and clinical characteristics such as age, 
gender, tumor grade, and stage. The results indicated 
that our telomere-associated risk model (AUC = 0.801) 
outperformed traditional clinical factors including age 
(AUC = 0.531), gender (AUC = 0.509), tumor grade 
(AUC = 0.499), and stage (AUC = 067)  (Fig.  2F). The 
time-dependent receiver operating characteristic curve 
in the test group revealed a one-year AUC of 0.801, a 
three-year AUC of 0.734, and a five-year AUC of 0.690, 
indicating that the risk profile consistently performs well 

in predicting overall survival in HCC patients (Fig. 2G). 
These findings underscored the superior accuracy of our 
prognostic risk model. 

Constructing column‑line graphs to predict TRGs
To enhance the accuracy of predicting survival in HCC 
patients, we applied the characterization of telomere-
related genes into clinical utility. This was achieved by 
integrating risk and clinical characterization scores to 
generate column line plots that incorporated independ-
ent risk factors such as age, sex, RS, grading, and staging. 
These plots were used to evaluate and quantify patient 
survival after 1, 3, and 5 years (Supplementary Fig. 3A). 
Furthermore, Nomogram modeling demonstrated almost 
identical survival rates at 1-, 3-, and 5-year intervals 
between actual observations and predicted outcomes 
(Supplementary Fig. 3B).

Enrichment score of telomere‑related genes in scRNA‑seq
The preprocessed single-cell sequencing data was further 
used to assess the distinctions between hepatocellular 
carcinoma and normal samples. PCA with a resolution 

Fig. 2  The prognostic validation of 18 TRGs. A Expression levels of these 18 TRGs were examined in both HCC tissues and adjacent tissues. B 
Kaplan–Meier curve analysis was performed to compare OS among different risk subtypes in the TCGA cohort. C Kaplan–Meier curve analysis 
demonstrated differences in OS between various risk subtypes within the GSE14520 cohort. D Forest plot displays the results of univariate Cox 
regression analysis conducted in the TCGA cohort. E Forest plot presents findings from multivariate Cox regression analysis carried out in the TCGA 
cohort. F ROC curve analysis was employed to evaluate the predictive value of clinicopathological parameters and risk scores in the TCGA cohort. G 
The area under the time-dependent ROC curve for 1-, 2-, and 3-year OS was calculated for evaluation purposes within the GSE14520 cohort
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of 0.1 was initially employed for dimensionality reduc-
tion (Supplementary Fig.  4), generating 9 cellular sub-
clusters (Fig.  3A). Subsequently, the cell subpopulations 
were annotated based on the known marker genes 
(Fig.  3B). The heatmap showed that these subpopula-
tions were in NKT cells, liver cells, hematopoietic stem/
progenitor cell-like cells, macrophages, and B lympho-
cytes (Fig.  3C). Utilizing the UMAP algorithm, we con-
ducted dimensionality reduction analysis on the TRGs 

of individual cells post-scoring to ascertain their distri-
bution across various cell types. Our findings revealed 
the elevated TRG scores in three specific cell types: B 
cells, macrophages, and NKT cells (Fig. 3D). Ultimately, 
an examination was conducted on the expression of 18 
pivotal TRGs across various cell types. As indicated by 
the Fig.  3E, ASF1A exhibited predominantly elevated 
expression in NKT cells, while demonstrating diminished 
expression in Hepatocytes.

Fig. 3  Single-cell RNA sequencing analysis of HCC. A Examination of single-cell RNA sequencing in HCC tissue shows that all cells are grouped 
into 9 distinct subclusters, as illustrated in the UMAP plot. B Heatmap of the correlation between the marker gene and 5 cell types. C The cells have 
been labeled as NKT cells, hepatocytes, HPC-like cells, macrophages, and B cells, among several others. D Following the scoring of TRGs, a UMAP 
visualization map depicting cell distribution was generated. E A visual heat map depicting the expression patterns of 18 crucial TRGs across five 
distinct cell types
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Analysis of differentiation trajectories of TRGS and NKT 
cells
To investigate the relationship between 18 TRGs and 
NKT cells, we conducted a separate dimensionality 
reduction analysis on NKT cells and processed them 
at a resolution of 0.1 (Supplementary Fig.  5). Through 

pseudotime trajectory analysis, we have identified that 
NKT cells can be categorized into 5 distinct tempo-
ral state cell clusters (Fig.  4A-B). Based on the findings 
presented in Fig.  4C-D, within these 5 differentiating 
temporal state cell clusters, 4 were situated in an early dif-
ferentiation stage (specifically states 1, 2, 3, and 5), while 

Fig. 4  The investigation into the differentiation pathway of NKT cells. A NKT cells have been clustered into 5 subpopulations in the UMAP plot. B 
NKT cells undergo differentiation into five unique temporal cell population states. C A scatter plot of different state distribution in two dimensions. 
D Graph of Pseudo-Time Trajectories. E The temporal changes in the expression levels of RUVBL1, SLC7A11, TCOF1, and ASF1A, along with the 
two-dimensional scatter plot depicting pseudotime trajectories
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one was positioned in a late differentiation stage (state 4). 
Following this, an analysis was conducted on the expres-
sion of 18 TRGs at various stages of NKT cell differentia-
tion. The findings indicated that RUVBL1, SLC7A11, and 
TCOF1 genes exhibited high levels of expression during 
the terminal differentiation stage (Fig. 4E-G), while other 
genes like ASF1A were predominantly expressed during 
the early stages of NKT cell differentiation (Fig. 4H).

Analysis of TRGs expression at the ST level
We conducted single-cell sequencing data analysis of 18 
TRGs in HCC, and subsequently investigated the expres-
sion of these 18 key genes in HCC using ST data. In the 
ST data of HCC, we observed the comprehensive gene 
expression profile (Fig.  5A). Following the exclusion 
of ribosomal and mitochondrial genes, we applied the 

SCTransform method for data standardization. Subse-
quently, we further elucidated the dimensionality reduc-
tion fractions through PCA (Supplementary Fig.  6) and 
elbow plot (Supplementary Fig. 7) analysis. This approach 
facilitated dimensionality reduction clustering, lead-
ing to the identification of 9 distinct cell subpopulations 
(Fig.  5B-C). Following this, FindMarkers was employed 
to identify 9 genes with spatial variability, and their 
expression levels on the tissue section are illustrated in 
Fig. 5D. Additionally, the expression patterns of 18 TRGs 
in the ST dataset are shown in Fig. 6E-F. The violin plot 
provides a clear depiction of the spatial transcriptome 
expression patterns for these 18 genes across different 
regions. It is evident from the plot that PPM1G, SMG5, 
and TALDO1 exhibited the highest levels of expression 
(Fig. 5G-H).

Fig. 5  Assessment of the expression of TRGs in the ST of HCC. A The overall gene expression profile in spatial transcriptomics data of HCC. B After 
undergoing clustering and dimensionality reduction using UMAP, the spatial transcriptomics data of liver cancer were classified into 9 distinct 
categories. C Displaying the 9 primary regions visually. D The genetic expression of nine highly mutable genes within ST. E, F The expression 
and spatial distribution of 18 TRGs in the ST data of HCC. G, H The violin plot illustrates the expression profiles of 18 TRGs
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Analysis of the correlation between TRGs and the TME 
in HCC
To further investigate the relationship between 18 TRGS 
and the TME in HCC, we used SPOTlight to perform 
inverse convolution on single-cell data to infer the main 
distribution of five TME cell types at various spatial loca-
tions. The expression profile of five types of TME cells 
was depicted in Supplementary Fig.  8A. The heatmap 
of correlations showed a strong positive relationship 
between macrophages and hepatocytes and between 
NKT cells and macrophages. Conversely, B cells cor-
related negatively with HPC-like cells (Supplementary 
Fig.  8B). Supplementary Fig.  8C vividly illustrated the 
proportion relationship between different cell types, 
from which we can observe that the proportion of Hepat-
ocytes to B cells, HPC-like cells, macrophages, and NKT 
cells was relatively limited. Furthermore, the network 
graph analyzed the interconnections between the five 
TME cells (Supplementary Fig. 8D). Ultimately, we con-
ducted a visual analysis of the expression of TME cells on 
the ST (Supplementary Fig. 8E). By comparing the spatial 
distribution of 18 TRGs and 5 TME markers on ST, it was 
observed that ASF1A exhibits predominant expression in 
HPC-like cells.

Relationship between TRGs and immune infiltration of HCC
To gain further insights into the distinct composition 
of the TME between high-risk and low-risk groups, 

we employed CIBERSORT to analyze the distribution 
of 22 immune cell types within HCC TME. The results 
obtained from the CIBERSORT algorithm were visu-
ally presented as a stacked plot (Fig.  6A). Moreover, we 
investigated the relationship between key genes and 
risk scores derived from 18 TRGs in HCC, focusing on 
their association with immune cell infiltration. Notably, 
Fig.  6B demonstrated significant correlations between 
a majority of these key genes and CD4+ T cells as well 
as macrophages exhibiting an M0 phenotype. Next, we 
analyzed the disparities in immune phenotypes between 
the high-risk group (N = 182) and the low-risk group 
(N = 178), comprising 360 HCC patients from the TCGA 
database. The immune subtypes were classified into six 
main groups as follows: C1, associated with wound heal-
ing; C2, characterized by IFN-g dominance; C3, linked 
to inflammation; C4, indicative of lymphocyte depletion; 
C5, representing immune quiescence; and C6, marked 
by TGF-β dominance. In the high-risk group for TRGs, 
subtype C4 accounted for 43% prevalence while subtype 
C3 represented 27%. Subtypes C1 and C2 constituted 
12% and 18%, respectively. Conversely, in the low-risk 
TRGs group, there was a higher occurrence of subtypes 
C3 at 48% and subtype C4 at 45%, with only minimal 
representation of subtypes C1 at 1% and subtype C2 at 
6%. Notably, p = 0.001 indicated a significant disparity in 
immunophenotypic composition between the low-TRGs 
risk group and the high-TRGs risk group (Fig.  6C). The 

Fig. 6  Analysis of immune infiltration associated with TRGs. A Evaluation of immune cell composition in the TME of HCC across different risk 
subtypes. B Investigation into the correlation between risk characteristics and infiltrated immune cells. *: p < 0.05 **: p < 0.01 ***: p < 0.001. C 
Assessment of immune subtypes within distinct risk groups of TRGs. D Comparison of TIDE scores among different risk subtypes. E Examination 
of the relationship between TIDE scores and TRGs risk scores
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correlation between TIDE scores and TRG risk scores 
was subsequently examined, revealing a significant ele-
vation in TIDE scores within the high-TRG risk group 
compared to the low-risk group (p < 0.001, Fig.  6D). 
Furthermore, a robust positive correlation between 
these two variables was observed (R = 0.47, p < 2.2e -16, 
Fig. 6E).

Importance of TRGs in chemotherapy and immunotherapy
To gain further insights into the variations in drug resist-
ance levels among different TRG risk subgroups of HCC 
patients, we conducted a comparison of IC50 levels for 
nine conventional chemotherapeutic agents between 
low and high-risk subgroups. Notably, significant differ-
ences in IC50 values were observed across risk groups 
for all nine representative drugs. Specifically, higher IC50 
values were identified for 5-Fluorouracil, Dasatinib, Ful-
vestrant, Gefitinib, and Ipatasertib in the low-risk group, 
suggesting their potential suitability as treatment options 
for patients with lower RS in HCC TRG (Supplementary 

Fig. 9A-E). Conversely, Sorafenib, Axitinib, Cisplatin and 
Entospletinib exhibited particular sensitivity in the high-
risk group which may render them more applicable to 
HCC patients with higher RS (Supplementary Fig. 9F-I).

MR identifies the involvement of the ASF1A gene 
in the pathogenesis of alcoholic HCC
Among the 18 TRGs selected by this risk model, we 
further investigated the TRG genes associated with 
alcoholic HCC development and identified a potential 
involvement of ASF1A in the pathogenesis of alcoholic 
HCC. To validate our hypothesis, MR analysis was con-
ducted to examine the causal relationship between the 
ASF1A and alcoholic HCC. Five SNPs were obtained 
from the GWAS website for predicting the susceptibil-
ity of the ASF1A to alcoholic HCC occurrence (p < 5e-8, 
r2 > 0.001, kb = 10,000, F > 10) (Fig.  7A, Table  1). The 
leave-one-out method demonstrated that excluding each 
SNP did not significantly alter the overall error line, indi-
cating strong reliability and stability of the ASF1A gene in 

Fig. 7  Mendelian randomization analysis model demonstrating a direct association between ASF1A and alcoholic HCC. A Forest plot 
of the Mendelian randomization analysis assessing the causal relationship between ASF1A and alcoholic HCC. B Residual sensitivity analysis 
investigating the impact of ASF1A SNP on alcoholic HCC. C Funnel plot of the Mendelian randomization analysis evaluating the causal 
relationship between ASF1A and alcoholic HCC. D Scatter plot illustrating the Mendelian randomization analysis examining the causal relationship 
between ASF1A and alcoholic HCC
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promoting alcoholic HCC occurrence (Fig. 7B). The MR-
Egger intercept test showed p = 0.50 > 0.05, suggesting no 
significant pleiotropy of the ASF1A gene in relation to 
alcoholic HCC occurrence (Table 2). Subsequently, sen-
sitivity analysis using Cochran’s Q test MR Egger regres-
sion (Q = 0.94) and Inverse variance weighted method 
(Q = 0.92) indicated less biased results caused by SNPs 
(Fig. 7C). Finally, the IVW method revealed a significant 
association between the increased expression level of 
the ASF1A and higher incidence of alcoholic HCC with 
an odds ratio of OR = 3.325 and a confidence interval for 
OR: 0.014–0.126; p = 0.02 (Table 3). The scatter plot visu-
ally depicted the causal relationship between ASF1A and 
the occurrence of alcoholic HCC (Fig.  7D). These find-
ings collectively support a causal link between the ASF1A 
and the development of alcoholic HCC.

Validation of ASF1A in vitro and in clinical samples
To investigate the biological function of the TRG gene 
ASF1A in HCC progression, a series of in vitro experi-
ments were conducted for validation purposes. Firstly, 
the expression of ASF1A was examined in the normal 
hepatocyte cell line LO2 and four common HCC cell 
lines. The results depicted in Fig.  8A demonstrated a 
significant elevation of ASF1A expression specifically 

in HCC cell lines Hep G2 and 7721. Subsequently, 
siRNA was employed to silence ASF1A expression 
in these two aforementioned cell lines. The specific 
sequences for ASF1A-specific siRNAs are provided 
in Supplementary Table  4. Western blot analysis per-
formed 48  h after transfection revealed that both si-
ASF1A-#1 and -#2 effectively inhibited the expression 
of ASF1A (Fig. 8B). Based on these experimental find-
ings, these two siRNAs were ultimately selected for 
subsequent studies. Next, we investigated the impact 
of ASF1A knockdown on HCC cell proliferation. The 
MTT assay results demonstrated significant inhibi-
tion of proliferation in Hep G2 and 7721 cells trans-
fected with si-ASF1A-#1 or -#2 (Fig. 8C). Furthermore, 
the Transwell assay revealed that si-ASF1A reduced 
the migratory and invasive capabilities of Hep G2 and 
7721 cells (Fig. 8D). A 24-h wound healing assay con-
firmed that ASF1A inhibition effectively attenuated the 
migration ability of HCC cells (Fig.  8E). Additionally, 
the colony formation assay indicated that si-ASF1A 
suppressed HCC cell growth (Fig.  8F). In conclusion, 
these findings collectively demonstrate that the down-
regulation of ASF1A significantly inhibits both prolif-
eration and motility in HCC cells.

To better investigate the potential clinical applica-
tion of ASF1A in HCC, we further explored the expres-
sion of ASF1A in clinical samples. We found that the 
expression levels of ASF1A mRNA were significantly 
increased in HCC tissues from the TCGA database. 
We further analyzed the ASF1A protein levels from the 
CPTAC database, and the results demonstrated that 
the ASF1A protein was elevated in HCC. Moreover, by 
using KM-plotter, we explored that elevated expression 
of ASF1A was associated with an inferior overall sur-
vival (OS), progression free survival (PFS), and relapse 
free survival (RFS) for the HCC patients (Supplemen-
tary Fig.  10). The results indicated that ASF1A maybe 
potential biomarker for HCC patients.

Discussion
In this study, we identified differentially expressed TRG 
genes in HCC by analyzing transcriptomic gene expres-
sion data from HCC samples and normal liver tissue 

Table 1  Five SNPs associated with both HCC and ASF1A

SNP Chromosome Position Effect allele Beta Se P

rs117567972 6 119,541,123 G -0.164 0.249 4.91E-10

rs17631303 17 43,516,402 G 0.154 0.083 4.89E-05

rs4946400 6 119,466,778 T 0.191 0.191 4.34E-09

rs6919908 6 31,244,960 C 0.078 0.091 2.73E-05

rs9885891 6 119,402,950 T -0.264 0.323 6.30E-12

Table 2  The Egger regression test evaluates potential 
multivariate interaction effects

Exposure Outcome Egger_intercept se P val

ASF1A Alcoholic Hepatocellular 
Carcinoma

0.08 0.11 0.50

Table 3  Five methodologies were employed to evaluate the 
causal association between ASF1A and the susceptibility to HCC

Exposure Method N snp OR 95% CI P

ASF1A MR Egger 5 1.748 0.25–12.20 0.61

Weighted median 5 2.716 0.77–9.63 0.12

Inverse variance weighted 5 3.325 1.20–9.22 0.02

Simple mode 5 2.702 0.54–13.57 0.29

Weighted mode 5 2.499 0.56–11.22 0.30
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samples in the TCGA database. Subsequently, univariate 
analysis and LASSO regression analysis were employed 
to identify the most significant TRGs for predicting the 
prognosis of HCC. Ultimately, a prognostic model con-
sisting of 18 selected TRGs was constructed. This study 
represents the first investigation into the prognostic 
value of TRGs in HCC and demonstrates that this model 
can serve as a foundation for selecting therapeutic agents 
targeting HCC. Immune subtypes C1-6 are a panel of 
surface markers associated with the immune system 
and commonly utilized for discerning distinct types of 
immune cells. Accumulated evidence has demonstrated 
that different immune subtypes exhibit varying progno-
ses in diverse tumors [20]. Specifically, the C3 subtype 
demonstrates the most favorable prognosis, while the 
C4 and C6 subtypes display the poorest prognosis [21]. 
Our findings solely investigated immunosubtypes C1-4, 
revealing that immunosubtype analysis indicated signifi-
cantly lower levels of C3 in the high-risk group of TRGs 
compared to the low-risk group. This outcome suggests 
that patients in the high-TRGs group have a poorer prog-
nosis than those in the low-TRGs group. Furthermore, 
TIDE was significantly higher in the high-risk group 
of TRGs than their low-risk counterparts, indicating 
a potential close association between tumor immune 

escape and this high-risk subgroup. Subsequently, we 
investigated the variations in resistance levels among dif-
ferent subtypes and our findings demonstrated that dis-
tinct risk subtypes exhibited varying sensitivities to nine 
conventional chemotherapeutic agents for HCC, thereby 
offering potential therapeutic targets for patients with 
diverse subtypes of HCC.

Telomeres, which are specialized structures located 
at the ends of chromosomes, play a crucial role in safe-
guarding the stability and integrity of chromosomes [22]. 
Telomere-associated genes encompass telomerase, telo-
meric repeat sequences, telomerase-activating receptors, 
and telomerase inhibitors [9, 23]. Aberrant expression of 
these genes is closely linked to the occurrence and pro-
gression of various neoplastic diseases such as renal can-
cer [14], lung adenocarcinoma [15], pancreatic cancer 
[13], and glioma [24].

The research on the impact of TRGs on HCC remains 
grossly inadequate. Within our risk model, we have suc-
cessfully identified 18 TRGs that exhibit a profound 
association with HCC, showcasing their pivotal roles 
across various tumor types. As an integral ribosomal 
protein, ASF1A assumes a crucial function in cellular 
protein synthesis. A plethora of accumulating evidence 
has underscored the significant involvement of ASF1A 

Fig. 8  Biological function of ASF1A in HCC. A Expression levels of ASF1A in normal hepatocytes and HCC cell lines. B Western blot analysis 
demonstrated effective inhibition of ASF1A expression by si-ASF1A-#1 or -#2. C MTT assay revealed that si-ASF1A suppressed the proliferation 
of Hep G2 and 7721 cells. D Transwell assay showed that si-ASF1A inhibited the migration and invasion abilities of Hep G2 and 7721 cells. E Wound 
healing assay demonstrated reduced migration and invasion capacities of Hep G2 and 7721 cells upon treatment with si-ASF1A. F In vitro colony 
formation assay indicated growth inhibition of Hep G2 and 7721 cells by si-ASF1A treatment. Magnification at 100 × , * p < 0.05, ** p < 0.01
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in tumorigenesis and disease progression. Notably, the 
expression level of ASF1A correlates directly with cancer 
differentiation, invasion potential, and overall prognosis; 
for instance, in cases of lung cancer, there is a remarkable 
upregulation of ASF1A expression which closely aligns 
with an unfavorable prognosis for patients [25]. In triple-
negative breast cancer, ASF1A is believed to be associated 
with resistance to the chemotherapeutic drug doxoru-
bicin [26]. A study conducted by Wu et al. revealed a sig-
nificant up-regulation of ASF1A expression in HCC and 
indicated that high levels of ASF1A predicted a poorer 
prognosis for HCC patients [27], which aligns with our 
findings and partially validates the accuracy of the TRGs 
risk model in predicting HCC patient prognosis. Further-
more, ASF1A may play a role in immune evasion from 
tumors. Li et al. demonstrated that ASF1A could inhibit 
M1-like macrophage polarization as well as T cell activa-
tion and proliferation, thereby diminishing the immune 
system’s capacity to target tumor cells [28]. Addition-
ally, ASF1A has been shown to promote clone formation 
and metastasis of tumor cells, consequently augmenting 
tumor spreading and invasiveness [29, 30].

In our groundbreaking study, we have successfully con-
firmed through MR imaging for the first time that ASF1A 
was aberrantly expressed in alcoholic HCC and closely 
associated with its pathogenesis. Furthermore, our in vitro 
results also demonstrated a significant upregulation of 
ASF1A expression in HCC cell lines. Notably, functional 
experiments on cells reveal that downregulating the 
expression of ASF1A remarkably inhibited both prolifera-
tion and migration of HCC cells. These compelling find-
ings strongly suggested that ASF1A played a pivotal role in 
the development of HCC, however, further research was 
warranted to elucidate its precise molecular mechanism.

The CDCA8 gene plays a pivotal role in orchestrat-
ing cell development and proliferation throughout the 
intricate dance of the cell division cycle [31]. It has been 
unequivocally demonstrated that aberrant expression of 
CDCA8 is intricately intertwined with the genesis of vari-
ous tumors, encompassing lung adenocarcinoma [32], 
thyroid cancer [33], prostate cancer [34], and HCC [35], 
thus endowing it with immense potential as a prognostic 
biomarker. Moreover, CDCA8 has been unambiguously 
shown to augment migratory prowess and invasiveness 
across diverse tumor cells, spanning pancreatic cancer 
cells [36], osteosarcoma cells [37], and bladder cancer 
cells [38]. In lung adenocarcinoma, HMMR has been 
identified as a pivotal oncogenic driver closely linked 
to patient prognosis in this particular malignancy [39, 
40]. Notably, Guo et al. have convincingly demonstrated 
that HMMR exerts additional potent effects on prostate 
cancer progression and metastasis through modula-
tion of the AURKA/mTORC2/E2F1 signaling cascade 

[41]. Moreover, IPO13 overexpression significantly con-
tributes to both enhanced proliferative capacity and 
increased metastatic potential in non-small cell lung car-
cinoma [42] as well as endometrial carcinoma cases [43]. 
Furthermore, aberrant MT3 expression acts as an influ-
ential oncogenic factor promoting uncontrolled growth 
and invasive behavior in bladder neoplasms [44]. Prog-
nostic risk models are not only applied in liver cancer, 
but have also been extensively developed and utilized in 
various other tumors. For example, cancer-testis antigens 
can more accurately predict the survival rate of STAD 
patients, and ELOVL4 has been identified as a potential 
therapeutic target for gastric cancer [45]. Additionally, 
cancer-associated fibroblasts can effectively predict the 
clinical prognosis of ovarian cancer patients, as well as 
the tumor immune microenvironment and the response 
to immune checkpoint inhibitors [46]. Meanwhile, 
another study showed that neurociliin 1 (NRP1), a key 
gene in tumor-associated fibroblasts, is upregulated in 
cervical cancer tissue, influencing tumor progression and 
differentiation processes [47]. Bao et  al.’s study suggests 
that the risk prognostic model of PANoptosis associated 
long non-coding ribonucleic acidscan be used to predict 
clinical outcomes in patients with lung adenocarcinoma 
and provide a theoretical basis for personalized treat-
ment of patients, such as immunotherapy [48]. These 
signature risk models provide better precision and per-
sonalized medicines, thereby enhancing patients’ overall 
treatment outcomes and quality of life.

However, our study still possesses certain limita-
tions. Firstly, the HCC telomere-associated risk model 
we constructed using the TCGA database lacks transla-
tion and follow-up time for validation purposes. Sec-
ondly, although the risk model can predict the prognosis 
of HCC patients to a certain extent, it is based on tran-
scriptomic features which adds intricacy to its operation. 
Thirdly, further fundamental in vitro and in vivo experi-
ments are required to refine the specific roles of the 18 
TRGs in HCC within the constructed risk model. Lastly, 
additional clinical experiments are needed to refine the 
utilization of 9 chemotherapeutic agents that exhibit sen-
sitivity toward different risk subtypes.

Conclusion
The present study has successfully developed a prog-
nostic model consisting of 18 TRGs, which accurately 
predicted the prognosis and immunotherapy effec-
tiveness for HCC patients. Moreover, it established a 
causal relationship between ASF1A and alcoholic HCC. 
This groundbreaking discovery not only enhanced our 
understanding of HCC development but also provided 
new insights and targets for preventing and treating 
HCC patients.
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